Teradata Package for Python Function Reference on VantageCloud Lake - __sub__ - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.

Teradata® Package for Python Function Reference on VantageCloud Lake

Deployment
VantageCloud
Edition
Lake
Product
Teradata Package for Python
Release Number
20.00.00.03
Published
December 2024
Language
English (United States)
Last Update
2024-12-19
dita:id
TeradataPython_FxRef_Lake_2000
Product Category
Teradata Vantage
teradataml.dataframe.sql.DataFrameColumn.__sub__ = __sub__(self, other)
Compute the difference between two ColumnExpressions using -
Note:
    * Difference between two timestamp columns return value in seconds.
 
PARAMETERS:
    other:
        Required Argument.
        Specifies Python literal or another ColumnExpression.
        Types: ColumnExpression, Python literal
 
RETURNS:
    ColumnExpression
 
RAISES:
    Exception
        A TeradataMlException gets thrown if SQLAlchemy
        throws an exception when evaluating the expression.
 
EXAMPLES:
    >>> load_example_data("burst", "finance_data")
    >>> df = DataFrame("finance_data")
    >>> df
       start_time_column end_time_column  expenditure  income  investment
    id
    1           67/06/30        07/07/10        415.0   451.0       180.0
    4           67/06/30        07/07/10        448.0   493.0       192.0
    2           67/06/30        07/07/10        421.0   465.0       179.0
    3           67/06/30        07/07/10        434.0   485.0       185.0
    5           67/06/30        07/07/10        459.0   509.0       211.0
    >>> load_example_data("uaf", "Convolve2RealsLeft")
    >>> timestamp_df = DataFrame("Convolve2RealsLeft")
    >>> timestamp_df
        row_seq                  row_i_time  col_seq               column_i_time    A     B     C     D
    id
    1         1  2018-08-08 08:02:00.000000        0  2018-08-08 08:00:00.000000  1.3  10.3  20.3  30.3
    1         1  2018-08-08 08:02:00.000000        1  2018-08-08 08:02:00.000000  1.4  10.4  20.4  30.4
    1         0  2018-08-08 08:00:00.000000        1  2018-08-08 08:02:00.000000  1.2  10.2  20.2  30.2
    1         0  2018-08-08 08:00:00.000000        0  2018-08-08 08:00:00.000000  1.1  10.1  20.1  30.1
 
    # Example 1: Subtract 100 from the income amount and assign the final amount
    #            to new column 'remaining_income'.
    >>> df.assign(remaining_income=df.income - 100)
       start_time_column end_time_column  expenditure  income  investment  remaining_income
    id
    3           67/06/30        07/07/10        434.0   485.0       185.0             385.0
    2           67/06/30        07/07/10        421.0   465.0       179.0             365.0
    1           67/06/30        07/07/10        415.0   451.0       180.0             351.0
    5           67/06/30        07/07/10        459.0   509.0       211.0             409.0
    4           67/06/30        07/07/10        448.0   493.0       192.0             393.0
 
    # Example 2: Subtract investment amount from the income amount and assign the
    #            final amount to new column 'remaining_income'.
    >>> df.assign(remaining_income=df.income - df.investment)
       start_time_column end_time_column  expenditure  income  investment  remaining_income
    id
    3           67/06/30        07/07/10        434.0   485.0       185.0             300.0
    2           67/06/30        07/07/10        421.0   465.0       179.0             286.0
    1           67/06/30        07/07/10        415.0   451.0       180.0             271.0
    5           67/06/30        07/07/10        459.0   509.0       211.0             298.0
    4           67/06/30        07/07/10        448.0   493.0       192.0             301.0
 
    # Example 3: Subtract 2 timestamp columns and assign to new column 'seconds'.
    >>> timestamp_df.assign(seconds = timestamp_df.row_i_time-timestamp_df.column_i_time)
        row_seq                  row_i_time  col_seq               column_i_time    A     B     C     D  seconds
    id
    1         1  2018-08-08 08:02:00.000000        0  2018-08-08 08:00:00.000000  1.3  10.3  20.3  30.3    120.0
    1         1  2018-08-08 08:02:00.000000        1  2018-08-08 08:02:00.000000  1.4  10.4  20.4  30.4      0.0
    1         0  2018-08-08 08:00:00.000000        1  2018-08-08 08:02:00.000000  1.2  10.2  20.2  30.2   -120.0
    1         0  2018-08-08 08:00:00.000000        0  2018-08-08 08:00:00.000000  1.1  10.1  20.1  30.1      0.0