Teradata Package for Python Function Reference on VantageCloud Lake - best_sampled_data_ - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference on VantageCloud Lake
- Deployment
- VantageCloud
- Edition
- Lake
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- Language
- English (United States)
- Last Update
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Lake_2000
- Product Category
- Teradata Vantage
- teradataml.hyperparameter_tuner.optimizer.GridSearch.best_sampled_data_
- DESCRIPTION:
Returns the best sampled data used for training the best model.
Note:
"best_sampled_data_" is not supported for non-model trainer functions.
RETURNS:
list of DataFrames.
EXAMPLES:
>>> # Create an instance of the search algorithm called "optimizer_obj"
>>> # by referring "__init__()" method.
>>> # Perform "fit()" method on the optimizer_obj to populate model records.
>>> # Retrieve the best sampled data.
>>> optimizer_obj.best_sampled_data_
[{'data': id MedHouseVal MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude
0 5233 0.955 -0.895906 0.680467 -0.387272 -0.202806 -0.125930 2.130214 -0.754303 0.653775
1 10661 3.839 2.724825 -1.258313 0.876263 -1.142947 -0.751004 -0.187396 -0.878298 0.852744
2 10966 1.896 0.057849 0.343287 -0.141762 -0.664624 -0.095545 0.588981 -0.829586 0.815727
3 3687 1.741 -0.383816 -1.679787 -0.849458 0.108000 0.718354 1.083500 -0.630308 0.593621
4 7114 2.187 -0.245392 0.258993 0.225092 -0.205781 -0.171508 -0.035650 -0.763160 0.755573
5 5300 3.500 -0.955800 -1.005429 -1.548811 -0.130818 2.630473 -0.601956 -0.696734 0.556604
6 686 1.578 -0.152084 -0.078186 -0.625426 -0.513581 -0.685892 -0.533101 0.906345 -1.141575
7 9454 0.603 -1.109609 -0.499660 0.355748 0.379188 -0.364674 -0.356799 1.827451 -1.655193
8 5202 1.000 -0.307539 1.101940 -0.379623 -0.570271 -0.141123 0.595366 -0.754303 0.635266
9 5769 2.568 -0.413546 0.343287 -0.922324 -0.028824 1.165456 0.031374 -0.656879 0.626012},
{'newdata': id MedHouseVal MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude
0 1754 1.651 -0.026315 0.596172 0.454207 -0.027273 0.068320 -0.082765 1.017055 -1.234118
1 3593 2.676 1.241775 0.090403 1.024283 -0.367626 -0.045626 0.252048 -0.621452 0.542722
2 7581 1.334 -0.714880 -1.258313 -0.604140 -0.259612 3.058041 0.857406 -0.776445 0.658402
3 8783 2.500 -0.170156 0.596172 0.163717 0.398242 -0.668529 -0.728130 -0.820729 0.621385
4 5611 1.587 -0.712366 -0.415366 -1.275716 0.012960 0.860515 0.764870 -0.820729 0.639893
5 244 1.117 -0.605796 1.101940 -0.160367 0.426668 1.022209 1.041018 0.946201 -1.187846}]