Teradata Package for Python Function Reference on VantageCloud Lake - Resample - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.

Teradata® Package for Python Function Reference on VantageCloud Lake

Deployment
VantageCloud
Edition
Lake
Product
Teradata Package for Python
Release Number
20.00.00.01
Published
July 2024
Language
English (United States)
Last Update
2024-09-09
dita:id
TeradataPython_FxRef_Lake_2000
Product Category
Teradata Vantage
 
 
Resample

 
Functions
       
Resample(data=None, data_filter_expr=None, timecode_start_value=None, timecode_duration=None, sequence_start_value=None, sequence_duration=None, interpolate=None, weight=None, spline_params_method='NOT_A_KNOT', spline_params_yp1=0.0, spline_params_ypn=0.0, **generic_arguments)
DESCRIPTION:
    The Resample() function transforms an irregular time series into a
    regular time series. It can also be used to alter the sampling interval
    for a time series.
 
PARAMETERS:
    data:
        Required Argument.
        Specifies the irregular time series that is to be altered.
        Types: TDSeries
 
    data_filter_expr:
        Optional Argument.
        Specifies the filter expression for "data".
        Types: ColumnExpression
 
    timecode_start_value:
        Optional Argument.
        Specifies the first sampling index to interpolate.
        Note:
            Provide either arguments "timecode_start_value" and
            "timecode_duration", or arguments "sequence_start_value"
            and "sequence_duration".
        Types: str
 
    timecode_duration:
        Optional Argument.
        Specifies the sampling interval associated with the result series.
        Note:
            Provide either arguments "timecode_start_value" and
            "timecode_duration", or arguments "sequence_start_value"
            and "sequence_duration".
        Permitted Values:
            * CAL_YEARS
            * CAL_MONTHS
            * CAL_DAYS
            * WEEKS
            * DAYS
            * HOURS
            * MINUTES
            * SECONDS
            * MILLISECONDS
            * MICROSECONDS
        Types: str
 
    sequence_start_value:
        Optional Argument.
        Specifies the first sampling index to interpolate.
        Note:
            Provide either arguments "timecode_start_value" and
            "timecode_duration", or arguments "sequence_start_value"
            and "sequence_duration".
        Types: float
 
    sequence_duration:
        Optional Argument.
        Specifies the sampling interval associated with the result series.
        Note:
            Provide either arguments "timecode_start_value" and
            "timecode_duration", or arguments "sequence_start_value"
            and "sequence_duration".
        Types: float
 
    interpolate:
        Required Argument.
        Specifies the interpolation strategies.
        Permitted Values:
            * LINEAR
            * LAG
            * LEAD
            * WEIGHTED
            * SPLINE
        Types: str
 
    weight:
        Optional Argument.
        Specifies the interpolated weighted value.
        Note:
            * Applicable only when "interpolate" set to 'WEIGHTED'.
        Types: float
 
    spline_params_method:
        Optional Argument.
        Specifies the type of spline method to use.
        Note:
            * Applicable only when "interpolate" set to 'SPLINE'.
        Permitted Values:
            * CLAMPED
            * NATURAL
            * NOT_A_KNOT
        Default Value: NOT_A_KNOT
        Types: str
 
    spline_params_yp1:
        Optional Argument.
        Specifies the value of the first derivative for the left boundary
        condition.
        Notes:
            * Used only when "interpolate" set to 'SPLINE'.
            * Used only when "spline_params_method" set to 'CLAMPED'.
        Default Value: 0.0
        Types: float
 
    spline_params_ypn:
        Optional Argument.
        Specifies the value of the first derivative for the right boundary
        condition.
        Notes:
            * Used only when "interpolate" set to 'SPLINE'.
            * Used only when "spline_params_method" set to 'CLAMPED'.
        Default Value: 0.0
        Types: float
 
    **generic_arguments:
        Specifies the generic keyword arguments of UAF functions.
        Below are the generic keyword arguments:
            persist:
                Optional Argument.
                Specifies whether to persist the results of the
                function in a table or not. When set to True,
                results are persisted in a table; otherwise,
                results are garbage collected at the end of the
                session.
                Note that, when UAF function is executed, an 
                analytic result table (ART) is created.
                Default Value: False
                Types: bool
 
            volatile:
                Optional Argument.
                Specifies whether to put the results of the
                function in a volatile ART or not. When set to
                True, results are stored in a volatile ART,
                otherwise not.
                Default Value: False
                Types: bool
 
            output_table_name:
                Optional Argument.
                Specifies the name of the table to store results. 
                If not specified, a unique table name is internally 
                generated.
                Types: str
 
            output_db_name:
                Optional Argument.
                Specifies the name of the database to create output 
                table into. If not specified, table is created into 
                database specified by the user at the time of context 
                creation or configuration parameter. Argument is ignored,
                if "output_table_name" is not specified.
                Types: str
 
 
RETURNS:
    Instance of Resample.
    Output teradataml DataFrames can be accessed using attribute 
    references, such as Resample_obj.<attribute_name>.
    Output teradataml DataFrame attribute name is:
        1. result
 
 
RAISES:
    TeradataMlException, TypeError, ValueError
 
 
EXAMPLES:
    # Notes:
    #     1. Get the connection to Vantage to execute the function.
    #     2. One must import the required functions mentioned in
    #        the example from teradataml.
    #     3. Function will raise error if not supported on the Vantage
    #        user is connected to.
 
    # Check the list of available UAF analytic functions.
    display_analytic_functions(type="UAF")
 
    # Load the example data.
    load_example_data("uaf", ["production_data"])
 
    # Create teradataml DataFrame object.
    production_data = DataFrame.from_table("production_data")
 
    # Example 1 : Execute function to transform irregular time series into
    #             regular time series when row index style is "SEQUENCE".
    # Create teradataml TDSeries object.
    data_series_df = TDSeries(data=production_data,
                              id="product_id",
                              row_index_style="SEQUENCE",
                              row_index="TD_SEQNO",
                              payload_field="beer_sales",
                              payload_content="REAL")
 
    # Execute Resample for TDSeries.
    uaf_out1 = Resample(data=data_series_df,
                        interpolate='LINEAR',
                        sequence_start_value=0.0,
                        sequence_duration=1.0)
 
    # Print the result DataFrame.
    print(uaf_out1.result)
 
    # Example 2 : Execute function to transform irregular time series into
    #             regular time series when row index style is "TIMECODE".
    # Create teradataml TDSeries object.
    data_series_df = TDSeries(data=production_data,
                              id="product_id",
                              row_index_style="TIMECODE",
                              row_index="TD_TIMECODE",
                              payload_field="beer_sales",
                              payload_content="REAL")
 
    # Execute Resample for TDSeries.
    uaf_out2 = Resample(data=data_series_df,
                        interpolate='LINEAR',
                        timecode_start_value="TIMESTAMP '2021-01-01 00:00:00'",
                        timecode_duration="MINUTES(30)")
 
    # Print the result DataFrame.
    print(uaf_out2.result)