Teradata Package for Python Function Reference on VantageCloud Lake - PowerTransform - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.

Teradata® Package for Python Function Reference on VantageCloud Lake

Deployment
VantageCloud
Edition
Lake
Product
Teradata Package for Python
Release Number
20.00.00.03
Published
December 2024
ft:locale
en-US
ft:lastEdition
2024-12-19
dita:id
TeradataPython_FxRef_Lake_2000
Product Category
Teradata Vantage
 
 
PowerTransform

 
Functions
       
PowerTransform(data=None, data_filter_expr=None, back_transform=False, p=None, b=None, lambda1=None, output_fmt_index_style='NUMERICAL_SEQUENCE', **generic_arguments)
DESCRIPTION:
    The PowerTransform() function takes a time series or numerically-sequenced
    series and applies a power transform to the series to produce a one-dimensional
    array. The passed-in series can be either a univariate or multivariate series.
    This function is useful for transforming an input series that has heteroscedastic 
    variance into a result series that has homoscedastic variance.
 
    User can use the new time series to build an ARIMA forecasting model.
    
    The following procedure is an example of how to get forecast values
    for a heteroscedastic time series using PowerTransform() function:
        * Apply PowerTransform() function to the heteroscedastic time series.
        * Use the resulting homoscedastic time series to build an ARIMA forecasting model.
        * Use the model to produce the initial forecast of the homoscedastic time series.
        * Use the backward transform on the initial forecast to extract the forecast
          values for the heteroscedastic time series.
 
 
PARAMETERS:
    data:
        Required Argument.
        Specifies an input series whose payload content value can be
        REAL or MULTIVAR_REAL.
        Types: TDSeries
 
    data_filter_expr:
        Optional Argument.
        Specifies the filter expression for "data".
        Types: ColumnExpression
 
    back_transform:
        Optional Argument.
        Specifies whether to apply back transform. 
        When set to False, black transform is not applied, otherwise it is applied.
        Default Value: False
        Types: bool
 
    p:
        Required Argument.
        Specifies the power to use in the transform equation.
        Types: float
 
    b:
        Required Argument.
        Specifies the logarithm to be applied for the transform equation.
        Types: float
 
    lambda1:
        Required Argument.
        Specifies the parameter used to decide the preferred
        power transform operation during the Box-Cox transformation.
        Types: float
 
    output_fmt_index_style:
        Optional Argument.
        Specifies the index style of the output format.
        Permitted Values: NUMERICAL_SEQUENCE, FLOW_THROUGH
        Default Value: NUMERICAL_SEQUENCE
        Types: str
 
    **generic_arguments:
        Specifies the generic keyword arguments of UAF functions.
        Below are the generic keyword arguments:
            persist:
                Optional Argument.
                Specifies whether to persist the results of the
                function in a table or not. When set to True,
                results are persisted in a table; otherwise,
                results are garbage collected at the end of the
                session.
                Note that, when UAF function is executed, an 
                analytic result table (ART) is created.
                Default Value: False
                Types: bool
 
            volatile:
                Optional Argument.
                Specifies whether to put the results of the
                function in a volatile ART or not. When set to
                True, results are stored in a volatile ART,
                otherwise not.
                Default Value: False
                Types: bool
 
            output_table_name:
                Optional Argument.
                Specifies the name of the table to store results. 
                If not specified, a unique table name is internally 
                generated.
                Types: str
 
            output_db_name:
                Optional Argument.
                Specifies the name of the database to create output 
                table into. If not specified, table is created into 
                database specified by the user at the time of context 
                creation or configuration parameter. Argument is ignored,
                if "output_table_name" is not specified.
                Types: str
 
 
RETURNS:
    Instance of PowerTransform.
    Output teradataml DataFrames can be accessed using attribute 
    references, such as PowerTransform_obj.<attribute_name>.
    Output teradataml DataFrame attribute name is:
        1. result
 
 
RAISES:
    TeradataMlException, TypeError, ValueError
 
 
EXAMPLES:
    # Notes:
    #     1. Get the connection to Vantage to execute the function.
    #     2. One must import the required functions mentioned in
    #        the example from teradataml.
    #     3. Function will raise error if not supported on the Vantage
    #        user is connected to.
 
    # Check the list of available UAF analytic functions.
    display_analytic_functions(type="UAF")
    
    # Load the example data.
    load_example_data("uaf", ["production_data"])
 
    # Create teradataml DataFrame object.
    data = DataFrame.from_table("production_data")
 
    # Create teradataml TDSeries object.
    data_series_df = TDSeries(data=data,
                              id="product_id",
                              row_index="TD_TIMECODE",
                              payload_field=["beer_sales", "wine_sales"],
                              payload_content="MULTIVAR_REAL")
 
    # Example 1: The function returns the results, which transforms
    #            heteroscedastic time series to homoscedastic time series.
    uaf_out = PowerTransform(data=data_series_df,
                             back_transform=True,
                             p=0.0,
                             b=0.0,
                             lambda1=0.5)
 
    # Print the result DataFrame.
    print(uaf_out.result)