7.00.02 - SparseSVM Functions - Aster Analytics

Teradata AsterĀ® Analytics Foundation User GuideUpdate 2

Product
Aster Analytics
Release Number
7.00.02
Published
September 2017
Language
English (United States)
Last Update
2018-04-17
dita:mapPath
uce1497542673292.ditamap
dita:ditavalPath
AA-notempfilter_pdf_output.ditaval
dita:id
zuk1466006200888


The SparseSVMTrainer and SparseSVMPredictor functions are designed for input that is in sparse format; that is, each table row represents an attribute and each sample (observation) consists of many attributes. These functions are suitable for tasks like text classification, whose high number of attributes (many unique words) might exceed the number of columns in the table.

This implementation of SparseSVM functions solves the primal form of a linear kernel support vector machine, using gradient descent on the objective function. The implementation is based primarily on Pegasos: Primal Estimated Sub-Gradient Solver for SVM (by S. Shalev-Shwartz, Y. Singer, and N. Srebro; presented at ICML 2007).