Teradata Package for Python Function Reference | 17.10 - spherical_distance - Teradata Package for Python
Teradata® Package for Python Function Reference
- Product
- Teradata Package for Python
- Release Number
- 17.10
- Published
- April 2022
- Language
- English (United States)
- Last Update
- 2022-08-19
- Product Category
- Teradata Vantage
- teradataml.geospatial.geodataframe.GeoDataFrame.spherical_distance = spherical_distance(self, geom_column)
- DESCRIPTION:
Returns the spherical distance between two spherical coordinates on the
planet using the Haversine Formula. Both coordinates must be specified
as ST_Point values.
PARAMETERS:
geom_column:
Required Argument.
Specifies a Geometry for the other spherical coordinate.
Types: str, ColumnExpression, GeometryType
SUPPORTED GEOMETRY TYPES:
ST_Point
RAISES:
TypeError, ValueError, TeradataMlException
RETURNS:
GeoDataFrame
EXAMPLES:
from teradataml import GeoDataFrame, load_example_data
from teradataml import Point, LineString, Polygon
# Load example data.
load_example_data("geodataframe", "sample_shapes")
# Create a GeoDataFrame.
geodf = GeoDataFrame("sample_shapes")
print(geodf)
# Let's select only few columns from GeoDataFrame and join the GeoDataFrame to self.
points = geodf.select(["skey", "points"])[geodf.skey.isin([1001, 1002, 1003])]
points = points.join(points, how="cross", lsuffix="l", rsuffix="r")
# Example 1: Get the spherical distance between two spherical coordinates on the planet using
# the Haversine Formula, where coordinates are in columns 'l_point' and 'r_point'.
points.spherical_distance(points.r_points)
# Example 2: Get the spherical distance between the spherical coordinates on the planet using
# the Haversine Formula, where set of points is in column "point" and another geometry
# defined by the Point object.
# Create an object of Point GeometryType.
p1 = Point(1,3)
# Pass the Point() GeometryType object as input to "geom_column" argument.
points.spherical_distance(geom_column=p1)