Teradata Package for Python Function Reference | 17.10 - msum - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference
- Product
- Teradata Package for Python
- Release Number
- 17.10
- Published
- April 2022
- Language
- English (United States)
- Last Update
- 2022-08-19
- lifecycle
- previous
- Product Category
- Teradata Vantage
- teradataml.dataframe.dataframe.DataFrame.msum = msum(self, width, sort_columns, drop_columns=False)
- DESCRIPTION:
Computes the moving sum for the current row and the preceding
"width"-1 rows in a partition, by sorting the rows according to
"sort_columns".
Note:
msum does not support below type of columns.
* BLOB
* BYTE
* CHAR
* CLOB
* DATE
* PERIOD_DATE
* PERIOD_TIME
* PERIOD_TIMESTAMP
* TIME
* TIMESTAMP
* VARBYTE
* VARCHAR
PARAMETERS:
width:
Required Argument.
Specifies the width of the partition. "width" must be
greater than 0 and less than or equal to 4096.
Types: int
sort_columns:
Required Argument.
Specifies the columns to use for sorting.
Note:
"sort_columns" does not support CLOB and BLOB type of
columns.
Types: str (or) ColumnExpression (or) List of strings(str)
or ColumnExpressions
drop_columns:
Optional Argument.
Specifies whether to retain all the input DataFrame columns
in the output or not. When set to False, columns from input
DataFrame are retained, dropped otherwise.
Default Value: False
Types: bool
RAISES:
TeradataMlException, TypeError
RETURNS:
teradataml DataFrame.
EXAMPLES:
# Load the data to run the example.
>>> from teradataml import load_example_data
>>> load_example_data("dataframe","sales")
# Create teradataml dataframe.
>>> df = DataFrame.from_table('sales')
>>> print(df)
Feb Jan Mar Apr datetime
accounts
Blue Inc 90.0 50.0 95.0 101.0 04/01/2017
Orange Inc 210.0 NaN NaN 250.0 04/01/2017
Red Inc 200.0 150.0 140.0 NaN 04/01/2017
Yellow Inc 90.0 NaN NaN NaN 04/01/2017
Jones LLC 200.0 150.0 140.0 180.0 04/01/2017
Alpha Co 210.0 200.0 215.0 250.0 04/01/2017
>>>
# Sorts the Data on column accounts in ascending order and
# calculates moving sum on the window of size 2.
>>> df.msum(width=2, sort_columns=df.accounts)
Feb Jan Mar Apr datetime msum_Feb msum_Jan msum_Mar msum_Apr
accounts
Jones LLC 200.0 150.0 140.0 180.0 04/01/2017 290.0 200 235 281
Red Inc 200.0 150.0 140.0 NaN 04/01/2017 410.0 150 140 250
Yellow Inc 90.0 NaN NaN NaN 04/01/2017 290.0 150 140 0
Orange Inc 210.0 NaN NaN 250.0 04/01/2017 410.0 150 140 430
Blue Inc 90.0 50.0 95.0 101.0 04/01/2017 300.0 250 310 351
Alpha Co 210.0 200.0 215.0 250.0 04/01/2017 210.0 200 215 250
>>>
# Sorts the Data on column accounts in ascending order and column
# Feb in descending order, then calculates moving sum by dropping the
# input DataFrame columns on the window of size 2.
>>> df.msum(width=2, sort_columns=[df.accounts, df.Feb.desc()], drop_columns=True)
msum_Feb msum_Jan msum_Mar msum_Apr
0 290.0 200 235 281
1 410.0 150 140 250
2 290.0 150 140 0
3 410.0 150 140 430
4 300.0 250 310 351
5 210.0 200 215 250
>>>