Teradata Package for Python Function Reference | 17.10 - isin - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference
- Product
- Teradata Package for Python
- Release Number
- 17.10
- Published
- April 2022
- Language
- English (United States)
- Last Update
- 2022-08-19
- lifecycle
- previous
- Product Category
- Teradata Vantage
- teradataml.dataframe.sql.DataFrameColumn.isin = isin(self, values=None)
- Function to check for the presence of values in a column.
PARAMETERS:
values:
Required Argument.
Specifies the list of values to check for their presence in the column.
in the provided set of values.
Types: list
RETURNS:
DataFrameColumn
RAISES:
TypeError - If invalid type of values are passed to argument 'values'.
ValueError - If None is passed to argument 'values'.
EXAMPLES:
>>> load_example_data("dataframe","admissions_train")
>>> df = DataFrame('admissions_train')
>>> df
masters gpa stats programming admitted
id
15 yes 4.00 Advanced Advanced 1
7 yes 2.33 Novice Novice 1
22 yes 3.46 Novice Beginner 0
17 no 3.83 Advanced Advanced 1
13 no 4.00 Advanced Novice 1
38 yes 2.65 Advanced Beginner 1
26 yes 3.57 Advanced Advanced 1
5 no 3.44 Novice Novice 0
34 yes 3.85 Advanced Beginner 0
40 yes 3.95 Novice Beginner 0
>>>
# Example 1: Filter results where gpa values are in any of these following values:
# 4.0, 3.0, 2.0, 1.0, 3.5, 2.5, 1.5
>>> df[df.gpa.isin([4.0, 3.0, 2.0, 1.0, 3.5, 2.5, 1.5])]
masters gpa stats programming admitted
id
31 yes 3.5 Advanced Beginner 1
6 yes 3.5 Beginner Advanced 1
13 no 4.0 Advanced Novice 1
4 yes 3.5 Beginner Novice 1
29 yes 4.0 Novice Beginner 0
15 yes 4.0 Advanced Advanced 1
36 no 3.0 Advanced Novice 0
>>>
# Example 2: Filter results where stats values are neither 'Novice' nor 'Advanced'
>>> df[~df.stats.isin(['Novice', 'Advanced'])]
masters gpa stats programming admitted
id
1 yes 3.95 Beginner Beginner 0
2 yes 3.76 Beginner Beginner 0
8 no 3.60 Beginner Advanced 1
4 yes 3.50 Beginner Novice 1
6 yes 3.50 Beginner Advanced 1
>>>