Teradata Package for Python Function Reference | 17.10 - describe_model - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference
- Product
- Teradata Package for Python
- Release Number
- 17.10
- Published
- April 2022
- Language
- English (United States)
- Last Update
- 2022-08-19
- lifecycle
- previous
- Product Category
- Teradata Vantage
- teradataml.catalog.model_cataloging.describe_model = describe_model(name)
- DESCRIPTION:
List details of the model, if accessible to the user.
PARAMETERS:
name:
Required Argument.
Specifies the name of the model to list the details for.
Types: str
RETURNS:
None.
RAISES:
TeradataMlException, TypeError, ValueError
EXAMPLES:
# Load the data to run the example
load_example_data("decisionforest", ["housing_train"])
# Create teradataml DataFrame objects.
housing_train = DataFrame.from_table("housing_train")
# This example uses home sales data to create a
# classification tree that predicts home style, which can be input
# to the DecisionForestPredict.
formula = "homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea + price + lotsize + bedrooms + bathrms + stories + garagepl"
rft_model = DecisionForest(data=housing_train,
formula = formula,
tree_type="classification",
ntree=50,
tree_size=100,
nodesize=1,
variance=0.0,
max_depth=12,
maxnum_categorical=20,
mtry=3,
mtry_seed=100,
seed=100
)
# Let's save this generated model.
save_model(model=rft_model, name="decision_forest_model", description="Decision Forest test")
# List all details of recently saved model 'decision_forest_model'.
describe_model(name="decision_forest_model")