Teradata Package for Python Function Reference | 17.10 - save_model - Teradata Package for Python
Teradata® Package for Python Function Reference
- Product
- Teradata Package for Python
- Release Number
- 17.10
- Published
- April 2022
- Language
- English (United States)
- Last Update
- 2022-08-19
- Product Category
- Teradata Vantage
- teradataml.catalog.model_cataloging.save_model = save_model(model, name, description, model_project=None, entity_target=None, performance_metrics=None)
- DESCRIPTION:
Function to save a teradataml Analytic Function model in Teradata Vantage.
PARAMETERS:
model:
Required Argument.
Specifies the teradataml analytic function model to be saved.
Types: teradataml analytic function object.
name:
Required Argument.
Specifies the unique name to identify the saved model.
The maximum length of the name is 128 characters.
Types: str
description:
Required Argument.
Specifies a note describing the model to be saved.
The maximum length of the description is 1024 characters.
Types: str
model_project:
Optional Argument.
Specifies the project that the model is associated with.
The maximum length of the model_project is 128 characters.
Types: str
Default Value: None
entity_target:
Optional Argument.
Specifies a group or team that the model is associated with.
The maximum length of the entity_target is 128 characters.
Types: str
Default Value: None
performance_metrics:
Optional Argument.
Specifies the performance metrics for the model.
performance_metrics must be a dictionary of the following form:
{ "<metric>" : { "measure" : <value> }, ... }
For example:
{ "AUC" : { "measure" : 0.5 }, ... }
The value should be of type float.
Types: dict
Default Value: None
RETURNS:
None.
RAISES:
TeradataMlException, TypeError, ValueError
EXAMPLES:
# Load the data to run the example
load_example_data("decisionforest", ["housing_train"])
# Create teradataml DataFrame objects.
housing_train = DataFrame.from_table("housing_train")
# This example uses home sales data to create a
# classification tree that predicts home style, which can be input
# to the DecisionForestPredict.
formula = "homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea + price + lotsize + bedrooms + bathrms + stories + garagepl"
rft_model = DecisionForest(data=housing_train,
formula = formula,
tree_type="classification",
ntree=50,
tree_size=100,
nodesize=1,
variance=0.0,
max_depth=12,
maxnum_categorical=20,
mtry=3,
mtry_seed=100,
seed=100
)
# Let's save this generated model.
save_model(model=rft_model, name="decision_forest_model", description="Decision Forest test")