AutoRegressor._init_ | AutoML | teradataml - AutoRegressor._init_ - Teradata Vantage

Teradata® VantageCloud Lake

Deployment
VantageCloud
Edition
Lake
Product
Teradata Vantage
Published
January 2023
ft:locale
en-US
ft:lastEdition
2024-12-11
dita:mapPath
phg1621910019905.ditamap
dita:ditavalPath
pny1626732985837.ditaval
dita:id
phg1621910019905

AutoRegressor is a special purpose AutoML feature to run regression specific tasks.

Optional Arguments:

  • include: Specifies the model algorithms to be used for model training phase.

    By default, all five models are used for training for regression and binary classification problem, while only three models are used for multiclass.

    Permitted values are "glm", "svm", "knn", "decision_forest", "xgboost".

  • exclude: Specifies the model algorithms to be excluded from model training phase.

    No model is excluded by default.

    Permitted values are "glm", "svm", "knn", "decision_forest", "xgboost".

  • verbose: Specifies the detailed execution steps based on verbose level.
    Permitted values are: *
    • 0: prints the progress bar and leaderboard.
    • 1: prints the execution steps of AutoML.
    • 2: prints the intermediate data between the execution of each step of AutoML.
    Default value is 0.
  • max_runtime_secs: Specifies the time limit in seconds for model training.
  • stopping_metric: Specifies the stopping metrics for stopping tolerance in model training.
    This argument is required if stopping_tolerance is set; otherwise, optional.
    Permitted values are:
    • For task_type "Regression": "R2", "MAE", "MSE", "MSLE", "RMSE", "RMSLE".
    • For task_type "Classification": 'MICRO-F1','MACRO-F1', 'MICRO-RECALL','MACRO-RECALL', 'MICRO-PRECISION', 'MACRO-PRECISION', 'WEIGHTED-PRECISION','WEIGHTED-RECALL', 'WEIGHTED-F1', 'ACCURACY'.
  • stopping_tolerance: Specifies the stopping tolerance for stopping metrics in model training.
    This argument is required if stopping_metric is set; otherwise, optional.
  • max_models: Specifies the maximum number of models to be trained.
  • custom_config_file: Specifies the path of JSON file in case of custom run.