- Train scikit-learn model.
>>> import numpy as np
>>> from sklearn.pipeline import make_pipeline >>> from sklearn.preprocessing import StandardScaler
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2])
>>> from sklearn.svm import SVC
>>> clf = make_pipeline(StandardScaler(), SVC(gamma='auto'))
>>> clf.fit(X, y)
Pipeline(steps=[('standardscaler', StandardScaler()), ('svc', SVC(gamma='auto'))])
- Deploy model trained outside Vantage.
# Import the module. >>> from teradataml import td_sklearn as osml >>> svc_obj = osml.deploy(model_name="svc_outside_tdml", model=clf, replace_if_exists=True)
Model is deleted. Model is saved.
- Load the model that is deployed from outside Vantage.
>>> loaded2 = osml.load(model_name="svc_outside_tdml") >>> loaded2
Pipeline(steps=[('standardscaler', StandardScaler()), ('svc', SVC(gamma='auto'))])
- Predict on loaded model.
>>> loaded2.predict(df_x_clasif.select(["col1", "col2"]))
col1 col2 pipeline_predict_1 0.426749100345748 0.052892805973648 2 0.061358610926176 -0.32391973812397 1 1.06516942678559 1.37093616727654 2 1.34487963860504 0.006631689510300 2 1.13904878664119 1.05078416796634 2 0.615820493677217 0.351753443920848 2 -0.58236154328365 -0.95815122115123 1 1.36289521790798 0.273506135473117 2 -1.24268158066154 -1.14715279214675 1 0.790100366929475 0.685306235288764 2