入力
<DecisionTreePredictの入力例>を参照してください。
SQL呼び出し
SELECT * FROM DecisionTreePredict ( ON iris_attribute_test AS AttributeTable PARTITION BY pid ON iris_attribute_output AS Model DIMENSION USING AttrTableGroupByColumns ('attribute') AttrTablePIDColumns ('pid') AttrTableValColumn ('attrvalue') OutputProb ('true') Responses ('1','2','3') ) AS dt ORDER BY pid;
出力
pid | pred_label | prob_for_label_1 | prob_for_label_2 | prob_for_label_3 |
---|---|---|---|---|
5 | 1 | 0.95348 | 0.02326 | 0.02326 |
10 | 1 | 0.95348 | 0.02326 | 0.02326 |
15 | 1 | 0.95348 | 0.02326 | 0.02326 |
20 | 1 | 0.95348 | 0.02326 | 0.02326 |
25 | 1 | 0.95348 | 0.02326 | 0.02326 |
30 | 1 | 0.95348 | 0.02326 | 0.02326 |
35 | 1 | 0.95348 | 0.02326 | 0.02326 |
40 | 1 | 0.95348 | 0.02326 | 0.02326 |
45 | 1 | 0.95348 | 0.02326 | 0.02326 |
50 | 1 | 0.95348 | 0.02326 | 0.02326 |
55 | 2 | 0.02632 | 0.94736 | 0.02632 |
60 | 2 | 0.02632 | 0.94736 | 0.02632 |
65 | 2 | 0.02632 | 0.94736 | 0.02632 |
70 | 2 | 0.02632 | 0.94736 | 0.02632 |
75 | 2 | 0.02632 | 0.94736 | 0.02632 |
80 | 2 | 0.02632 | 0.94736 | 0.02632 |
85 | 2 | 0.02632 | 0.94736 | 0.02632 |
90 | 2 | 0.02632 | 0.94736 | 0.02632 |
95 | 2 | 0.02632 | 0.94736 | 0.02632 |
100 | 2 | 0.02632 | 0.94736 | 0.02632 |
105 | 3 | 0.06250 | 0.12500 | 0.81250 |
110 | 3 | 0.07692 | 0.07692 | 0.84616 |
115 | 3 | 0.06250 | 0.06250 | 0.87500 |
120 | 3 | 0.14286 | 0.57143 | 0.28571 |
125 | 3 | 0.07692 | 0.07692 | 0.84616 |
130 | 3 | 0.14286 | 0.57143 | 0.28571 |
135 | 3 | 0.14286 | 0.57143 | 0.28571 |
140 | 3 | 0.06250 | 0.12500 | 0.81250 |
145 | 3 | 0.07692 | 0.07692 | 0.84616 |
150 | 3 | 0.25000 | 0.25000 | 0.50000 |