Teradata Package for Python Function Reference - 17.00 - ParametricTest - Teradata Package for Python

Teradata® Package for Python Function Reference

Product
Teradata Package for Python
Release Number
17.00
Release Date
April 2021
Content Type
Programming Reference
Publication ID
B700-4008-070K
Language
English (United States)
 
 
ParametricTest

 
Functions
       
ParametricTest(data, columns=None, dependent_column=None, equal_variance=False, fallback=False, first_column=None, first_column_values=None, group_columns=None, allow_duplicates=False, paired=False, second_column=None, second_column_values=None, stats_database=None, style='t', probability_threshold=0.05, with_indicator=False)
DESCRIPTION:
    Parametric tests make assumptions about the data, such as the observations being
    normally distributed. This can be verified with a test of normality prior to executing
    a parametric test. Both T-Tests and F-Tests are provided. T-Tests can be either paired
    or unpaired, while the unpaired T-Tests can be with or without an indicator variable.
 
    F-Tests can be 1-way, 2-way or 3-way. 2-way tests can have equal or unequal cell
    counts (count of rows having a combination of distinct column values), while the 3-way
    test must have equal cell counts. A 1-way test has 1 independent input column, a 2-way
    test has 2 independent columns and a 3-way test has 3 independent columns in addition
    to a dependent "column of interest".
    
PARAMETERS:
    data:
        Required Argument.
        Specifies the input data to run statistical tests.
        Types: teradataml DataFrame
    
    columns:
        Optional Argument.
        Specifies the name(s) of the column(s) representing independent variables to be
        analyzed in a F-Test N-Way with Equal Cell Counts analysis. There can be 1, 2 or
        3 columns listed in this parameter. If 2 or 3 columns, cell counts (the count of
        rows having a combination of distinct column values) should be the same.
        Types: str OR List of Strings (str)
    
    dependent_column:
        Optional Argument.
        Specifies the name of the column representing the dependent variable in an F-Test.
        Types: str
    
    equal_variance:
        Optional Argument.
        Specifies whether the variance of the two samples (columns) is assumed to be equal.
        The default assumption is that the variances are not equal.
        Note:
            This is available to use with 'T-test'.
        Default Value: False
        Types: str
    
    fallback:
        Optional Argument.
        Specifies whether the FALLBACK is requested as in the output result or not.
        Default Value: False (Not requested)
        Types: bool
    
    first_column:
        Optional Argument.
        Specifies the name of the column representing the first variable to analyze for a
        T-test. For an F-Test, specifies the name of the column representing the first
        independent variable in the analysis.
        Types: str
    
    first_column_values:
        Optional Argument. Required for a 2-way F-Test with Unequal Cell Counts.
        Specifies a list of the "first_column" values to be included in the analysis.
        Types: int, float, str OR List of Integers, Floats or Strings
    
    group_columns:
        Optional Argument.
        Specifies the name(s) of the column(s) for grouping so that a separate result
        is produced for each value or combination of values in the specified column or
        columns.
        Note:
            This option is not available for an F 2-way analysis.
        Types: str OR list of Strings (str)
    
    allow_duplicates:
        Optional Argument.
        Specifies whether duplicates are allowed in the output or not.
        Default Value: False
        Types: bool
    
    paired:
        Optional Argument.
        Specifies whether the first and second column values are matched with each other.
        When set to True, the mean difference is also analyzed.
        Note:
            This is an option for T-Test.
        Default Value: False
        Types: bool
    
    second_column:
        Optional Argument.
        Specifies the name of the column representing the second variable to analyze.
        If the "with_indicator" argument is set to True, the second column is used to
        define two analysis categories, one where the second column is negative or zero,
        and another where the second column is positive.
        For an F-Test, specifies the name of the column representing the second independent
        variable in the analysis.
        Note:
            Date Type is not allowed to be used for the paired T-Test.
        Types: str
    
    second_column_values:
        Optional Argument. Required for a 2-way F-Test with Unequal Cell Counts.
        Specifies a list of the "second_column" values to be included in the analysis.
        Types: int, float, str OR List of Integers, Floats or Strings
    
    stats_database:
        Optional Argument.
        Specifies the database where the statistical test metadata tables are installed.
        If not specified, the source database is searched for these metadata tables.
        Types: str
    
    style:
        Optional Argument.
        Specifies the test style.
        Permitted Values:
            * 't' - T-Test paired, unpaired or unpaired with indicator variable
                    (second column).
            * 'fnway' - F-Test N-Way with Equal Cell Counts (1, 2, or 3 columns with same
                        number of cell counts). A cell count is the count of rows having a
                        combination of distinct column values.
            * 'f2way' - F-Test 2-Way with Unequal Cell Counts (2 columns with possibly
                        different numbers of cell counts). A cell count is the count of rows
                        having a combination of distinct column values.
        Default Value: 't'
        Types: str
    
    probability_threshold:
        Optional Argument.
        Specifies the threshold probability, i.e., "alpha" probability, below which the
        null hypothesis is rejected.
        Default Value: 0.05
        Types: float
    
    with_indicator:
        Optional Argument.
        Specifies whether the second column is used to indicate there are two analysis
        categories: one for the case where the second column is negative or zero, and
        another when the second column is positive. When this is set to True, then second
        column is used to indicate the analysis categories.
        Note:
            Argument can be used with an un-paired T-Test, i.e., when style is set to
            't' and paired is set to 'False'.
        Default Value: False
        Types: bool
    
RETURNS:
    An instance of ParametricTest.
    Output teradataml DataFrames can be accessed using attribute references, such as 
    ParametricTestObj.<attribute_name>.
    Output teradataml DataFrame attribute name is: result.
    
RAISES:
    TeradataMlException, TypeError, ValueError
    
EXAMPLES:
    # Notes:
    #   1. To execute Vantage Analytic Library functions,
    #       a. import "valib" object from teradataml.
    #       b. set 'configure.val_install_location' to the database name where Vantage 
    #          analytic library functions are installed.
    #   2. Datasets used in these examples can be loaded using Vantage Analytic Library 
    #      installer.
    #   3. The Statistical Test metadata tables must be loaded into the database where
    #      Analytics Library is installed.
    # Import valib object from teradataml to execute this function.
    from teradataml import valib
 
    # Set the 'configure.val_install_location' variable.
    from teradataml import configure
    configure.val_install_location = "SYSLIB"
 
    # Create required teradataml DataFrames.
    custanly = DataFrame("customer_analysis")
    print(custanly)
    cust = DataFrame("customer")
    print(cust)
    
    # Example 1: Perform T-Test with default values.
    obj = valib.ParametricTest(data=custanly,
                               first_column="avg_cc_bal",
                               second_column="avg_sv_bal",
                               paired=True,
                               equal_variance=True,
                               group_columns=["age", "gender"])
 
    # Print the results.
    print(obj.result)
    
    # Example 2: Perform One way F-Test.
    obj = valib.ParametricTest(data=cust,
                               style="fnway",
                               dependent_column="income",
                               columns="gender",
                               probability_threshold=0.01,
                               group_columns=["years_with_bank", "nbr_children"])
 
    # Print the results.
    print(obj.result)
    
    # Example 3: Perform a 2-way F-Test with Unequal Cell Counts.
    obj = valib.ParametricTest(data=cust,
                               style="f2way",
                               dependent_column="income",
                               first_column="years_with_bank",
                               first_column_values=[0, 1, 2, 3, 4, 5, 6, 7],
                               second_column="marital_status",
                               second_column_values=[1, 2, 3, 4],
                               probability_threshold=0.05)
 
    # Print the results.
    print(obj.result)