Teradata Package for Python Function Reference - 17.00 - avg - Teradata Package for Python

Teradata® Package for Python Function Reference

Product
Teradata Package for Python
Release Number
17.00
Release Date
November 2021
Content Type
Programming Reference
Publication ID
B700-4008-070K
Language
English (United States)
 
 
avg

 
Functions
       
avg(value_expression)
DESCRIPTION:
    Function returns the arithmetic average of all values in value_expression.
 
PARAMETERS:
    value_expression:
        Required Argument.
        Specifies a ColumnExpression of a numeric column for which the average
        is to be computed.
        Format for the argument: '<dataframe>.<dataframe_column>.expression'.
 
        Note:
            Nulls are not included in the result computation.
 
NOTE:
    Function accepts positional arguments only.
 
ALTERNATE NAMES:
    1. ave
    2. average
 
EXAMPLES:
    # Load the data to run the example.
    >>> load_example_data("dataframe", "admissions_train")
    >>>
 
    # Create a DataFrame on 'admissions_train' table.
    >>> admissions_train = DataFrame("admissions_train")
    >>> admissions_train
       masters   gpa     stats programming  admitted
    id
    22     yes  3.46    Novice    Beginner         0
    36      no  3.00  Advanced      Novice         0
    15     yes  4.00  Advanced    Advanced         1
    38     yes  2.65  Advanced    Beginner         1
    5       no  3.44    Novice      Novice         0
    17      no  3.83  Advanced    Advanced         1
    34     yes  3.85  Advanced    Beginner         0
    13      no  4.00  Advanced      Novice         1
    26     yes  3.57  Advanced    Advanced         1
    19     yes  1.98  Advanced    Advanced         0
    >>>
 
    # Example 1: Calculate the average value for the "gpa" column.
    # Import func from sqlalchemy to execute avg function.
    >>> from sqlalchemy import func
 
    # Create a sqlalchemy Function object.
    >>> avg_func_ = func.avg(admissions_train.gpa.expression)
    >>>
 
    # Pass the Function object as input to DataFrame.assign().
    >>> df = admissions_train.assign(True, avg_gpa_=avg_func_)
    >>> print(df)
       avg_gpa_
    0   3.54175
    >>>
    
    # "average" can be used as an alternative function name.
    >>> average_func_ = func.average(admissions_train.gpa.expression)
    >>>
 
    # Pass the Function object as input to DataFrame.assign().
    >>> df = admissions_train.assign(True, average_gpa_ = average_func_)
    >>> print(df)
       average_gpa_
    0       3.54175
    >>>
 
    # Example 2: Calculate the average "gpa" for each level of programming.
    # Note:
    #   When assign() is run after DataFrame.groupby(), the function ignores
    #   the "drop_columns" argument.
    >>> admissions_train.groupby("programming").assign(average_gpa_=func.ave(admissions_train.gpa.expression))
      programming  average_gpa_
    0    Advanced      3.615625
    1      Novice      3.294545
    2    Beginner      3.660000
    >>>