Teradata Package for Python Function Reference - 17.00 - GLML1L2 - Teradata Package for Python

Teradata® Package for Python Function Reference

Product
Teradata Package for Python
Release Number
17.00
Release Date
April 2021
Content Type
Programming Reference
Publication ID
B700-4008-070K
Language
English (United States)

 
teradataml.analytics.mle.GLML1L2 = class GLML1L2(builtins.object)
     Methods defined here:
__init__(self, formula=None, data=None, alpha=0.0, lambda1=0.0, max_iter_num=10000, stop_threshold=1e-07, family='Gaussian', randomization=False, data_sequence_column=None)
DESCRIPTION:
    The GLML1L2 function differs from the GLM function in these ways:
        1. GLML1L2 supports the regularization models Ridge, LASSO, and
           Elastic Net.
        2. GLML1L2 outputs a model teradataml DataFrame and optionally,
           a factor teradataml DataFrame (GLM outputs only a model).
 
 
PARAMETERS:
    formula:
        Required Argument.
        A string consisting of "formula". Specifies the model to be fitted.
        Only basic formula of the "col1 ~ col2 + col3 +..." form are
        supported and all variables must be from the same teradataml
        DataFrame object. The response should be column of type float, int or
        bool.
 
    data:
        Required Argument.
        Specifies the name of the teradataml DataFrame that contains the
        input data.
 
    alpha:
        Optional Argument.
        Specifies whether to use Lasso, Ridge or Elastic Net. If the value is
        0, Ridge is used. If the value is 1, Lasso is used. For any value
        between 0 and 1, Elastic Net is applied.
        Default Value: 0.0
        Types: float
 
    lambda1:
        Optional Argument.
        Specifies the parameter that controls the magnitude of the regularization
        term. The value lambda must be in the range [0.0, 100.0].
        A value of zero disables regularization.
        Default Value: 0.0
        Types: float
 
    max_iter_num:
        Optional Argument.
        Specifies the maximum number of iterations over the data.
        The parameter max_iterations must be a positive int value in
        the range [1, 100000].
        Default Value: 10000
        Types: int
 
    stop_threshold:
        Optional Argument.
        Specifies the convergence threshold.
        Default Value: 1.0E-7
        Types: float
 
    family:
        Optional Argument.
        Specifies the distribution exponential family.
        Default Value: "Gaussian"
        Permitted Values: Binomial, Gaussian
        Types: str
 
    randomization:
        Optional Argument.
        Specify whether to randomize the input teradataml DataFrame data.
        Default Value: False
        Types: bool
 
    data_sequence_column:
        Optional Argument.
        Specifies the list of column(s) that uniquely identifies each row of
        the input argument "data". The argument is used to ensure
        deterministic results for functions which produce results that vary
        from run to run.
        Types: str OR list of Strings (str)
 
RETURNS:
    Instance of GLML1L2.
    Output teradataml DataFrames can be accessed using attribute
    references, such as GLML1L2Obj.<attribute_name>.
    Output teradataml DataFrame attribute names are:
        1. output
        2. factor_data
 
    Note:
        1. When argument randomization is True or if any categorical columns
           are provided in formula argument, then and only then output teradataml DataFrame
           factor_data is created.
        2. factor_data can be used as the input (data) for future GLML1L2
           function calls, thereby saving the function from repeating the
           categorical-to-numerical conversion or randomization.
 
 
RAISES:
    TeradataMlException
 
 
EXAMPLES:
    # Load the data to run the example.
    load_example_data("GLML1L2", ["admissions_train", "housing_train"])
 
    # Create teradataml DataFrame object.
    admissions_train = DataFrame.from_table("admissions_train")
    housing_train = DataFrame.from_table("housing_train")
 
    # Example 1 - The input DataFrame is admission_train, running GLML1L2 function as
    #             Ridge Regression Analysis. Alpha (0.0) indicates L2 (ridge regression).
 
    glml1l2_out1 = GLML1L2(data=admissions_train,
                           formula = "admitted ~ masters + gpa + stats + programming",
                           alpha=0.0,
                           lambda1=0.02,
                           family='Binomial',
                           randomization=True
                          )
 
    # Print the output DataFrames.
    # STDOUT DataFrame.
    print(glml1l2_out1.output)
 
    # factor_data dataframe.
    print(glml1l2_out1.factor_data)
 
    # Example 2 - The input DataFrame is factor_data DataFrame which is generated by
    #             (GLML1L2 Example 1: Ridge Regression, Binomial Family). In factor_data DataFrame
    #             categorical predictors were converted to integers.
 
    glml1l2_out2 = GLML1L2(data=glml1l2_out1.factor_data,
                           formula = "admitted ~ masters_yes + stats_beginner + stats_novice + programming_beginner + programming_novice + gpa",
                           alpha=0.0,
                           lambda1=0.02,
                           family='Binomial'
                          )
 
    # Print the result.
    print(glml1l2_out2)
 
    # Example 3 - The input DataFrame is housing_train, running GLML1L2 function as
    #             LASSO Regression (Family Gaussian distribution). Alpha (1.0) indicates
    #             L1 (LASSO) regularization.
 
    glml1l2_out3 = GLML1L2(data=housing_train ,
                           formula = "price ~ lotsize + bedrooms + bathrms + stories + garagepl + driveway + recroom + fullbase + gashw + airco + prefarea + homestyle",
                           alpha=1.0,
                           lambda1=0.02,
                           family='Gaussian'
                          )
 
    # Print all output dataframes.
    print(glml1l2_out3.output)
    print(glml1l2_out3.factor_data)
__repr__(self)
Returns the string representation for a GLML1L2 class instance.
get_build_time(self)
Function to return the build time of the algorithm in seconds.
When model object is created using retrieve_model(), then the value returned is 
as saved in the Model Catalog.
get_prediction_type(self)
Function to return the Prediction type of the algorithm.
When model object is created using retrieve_model(), then the value returned is 
as saved in the Model Catalog.
get_target_column(self)
Function to return the Target Column of the algorithm.
When model object is created using retrieve_model(), then the value returned is 
as saved in the Model Catalog.
show_query(self)
Function to return the underlying SQL query.
When model object is created using retrieve_model(), then None is returned.