Description
The DecisionForestPredict function uses the model generated by the DecisionForest
(td_decision_forest_mle
) function to generate predictions
on a response variable for a test set of data. The model can be stored in either
a tbl_teradata or a DecisionForest object.
Usage
td_decision_forest_predict_sqle ( object = NULL, newdata = NULL, id.column = NULL, detailed = FALSE, terms = NULL, newdata.order.column = NULL, object.order.column = NULL ) ## S3 method for class 'td_decision_forest_mle' predict( object = NULL, newdata = NULL, id.column = NULL, detailed = FALSE, terms = NULL, newdata.order.column = NULL, object.order.column = NULL)
Arguments
object |
Required Argument. |
object.order.column |
Optional Argument. |
newdata |
Required Argument. |
newdata.order.column |
Optional Argument. |
id.column |
Required Argument. |
detailed |
Optional Argument. |
terms |
Optional Argument. |
Value
Function returns an object of class "td_decision_forest_predict_sqle"
which is a named list containing object of class "tbl_teradata".
Named list member can be referenced directly with the "$" operator
using the name: result.
Examples
# Get the current context/connection con <- td_get_context()$connection # Load example data. loadExampleData("decisionforestpredict_example", "housing_test", "housing_train") # Create object(s) of class "tbl_teradata". housing_test <- tbl(con, "housing_test") housing_train <- tbl(con, "housing_train") # Example 1 - # First train the data, i.e., create a decision forest Model. formula <- (homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea + price + lotsize + bedrooms + bathrms + stories + garagepl) decision_forest_model <- td_decision_forest_mle(data=housing_train, formula = formula, tree.type="classification", ntree=50, tree.size=100, nodesize=1, variance=0, max.depth=12, maxnum.categorical=20, mtry=3, mtry.seed=100, seed=100 ) # Run predict on the output of td_decision_forest_mle() function. td_decision_forest_predict_out <- td_decision_forest_predict_sqle( object = decision_forest_model, newdata = housing_test, id.column = "sn", detailed = FALSE, terms = c("homestyle") ) # Alternatively use the predict S3 method to find predictions. predict_out <- predict(decision_forest_model, newdata = housing_test, id.column = "sn", detailed = FALSE, terms = c("homestyle") )