TD_SVM Examples | SVM | Teradata Vantage - Examples: How to Use TD_SVM - Analytics Database

Database Analytic Functions

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
VMware
Product
Analytics Database
Release Number
17.20
Published
June 2022
Language
English (United States)
Last Update
2024-10-04
dita:mapPath
gjn1627595495337.ditamap
dita:ditavalPath
ayr1485454803741.ditaval
dita:id
jmh1512506877710
Product Category
Teradata Vantageā„¢

Example: Cal Housing Data Set

Starting Data (cal_housing_ex_raw)

Only part of the dataset is shown in this example.
id MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude MedHouseVal
14870 1.858 23 3.901 1.077 1025 2.47 32.64 -117.11 0.675
6044 2.114 27 3.855 1.072 1024 4.633 34.05 -117.74 1.109
3593 6.654 32 6.331 0.995 1285 3.104 34.24 -118.48 2.676
9454 1.228 25 5.504 1.154 991 2.629 39.77 -123.23 0.603
18760 3.282 16 5.998 1.076 1414 3.081 40.6 -122.25 1.283
11670 4.5 28 5.102 1.044 2112 2.63 33.84 -118.01 2.021
17768 2.756 29 4.53 1.04 3572 4.603 37.35 -121.85 1.601
244 2.391 44 4.866 1.164 2269 3.72 37.78 -122.22 1.117
5328 2.768 23 3.039 1.064 2031 1.637 34.04 -118.45 2.775
14365 2.164 43 4.533 0.995 392 1.867 32.72 -117.23 2.442
2313 2.486 15 5.468 1.045 649 2.449 36.94 -119.7 0.863
12342 2.588 28 6.268 1.372 3470 2.59 33.84 -116.53 1.59
6558 6.827 36 7.021 1.036 1897 2.71 34.2 -118.11 3.594
17157 9.78 20 6.678 0.918 324 2.219 37.43 -122.21 5
18099 5.753 27 6.437 1.027 1259 2.868 37.32 -122.01 4.314

Standardize Data Using TD_ScaleFit with Housing Data

SELECT * FROM TD_ScaleFit(
 ON cal_housing_ex_raw AS InputTable
 OUT VOLATILE TABLE OutputTable(scaleFitOut_cal_ex)
 USING
 TargetColumns('medinc', 'houseage', 'averooms', 'avebedrms', 'population', 'aveoccup', 'latitude', 
'longitude')
 ScaleMethod('STD')
) AS dt2;

Output from TD_ScaleFit

TD_STATYPE MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude
min 1.228 15 3.039 0.918 324 1.637 32.64 -123.23
max 9.78 44 7.021 1.372 3572 4.633 40.6 -116.53
sum 57.698 416 79.531 16.08 23714 43.208 536.76 -1795.16
count 15 15 15 15 15 15 15 15
null 0 0 0 0 0 0 0 0
variance 5.755 71.352 1.377 0.01 974223.638 0.746 6.407 5.488
std 2.318 8.161 1.134 0.099 953.559 0.834 2.445 2.263
ustd 2.318 8.161 1.134 0.099 953.559 0.834 2.445 2.263
multiplier 1 1 1 1 1 1 1 1
intercept 0 0 0 0 0 0 0 0
location 3.847 27.733 5.302 1.072 1580.933 2.881 35.784 -119.677
scale 2.318 8.161 1.134 0.099 953.559 0.834 2.445 2.263
globalscale_false null null null null null null null null
ScaleMethodNumberMapping: [0:mean,1:sum,2:ustd,3:std,4:range,5:midrange,6:maxabs,7:rescale] 3 3 3 3 3 3 3 3
missvalue_KEEP null null null null null null null null

Standardize Data Using TD_ScaleTransform with Housing Data

CREATE MULTISET TABLE cal_housing_ex_scaled AS (
 SELECT * from TD_ScaleTransform(
 ON cal_housing_ex_raw AS InputTable
 ON scaleFitOut_cal_ex AS FitTable DIMENSION
 USING
 Accumulate('id', 'MedHouseVal')
 ) AS dt1
) with data;

Output Using TD_ScaleTransform

id MedHouseVal MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude
14870 0.675 -0.858 -0.58 -1.236 0.051 -0.583 -0.492 -1.286 1.134
6044 1.109 -0.747 -0.09 -1.276 0.004 -.584 2.101 -0.709 0.856
3593 2.676 1.211 0.523 0.908 -0.777 -.31 0.268 -0.631 0.529
9454 0.603 -1.13 -0.335 0.178 0.827 -.619 -0.302 1.63 -1.57
18760 1.283 -0.006 -1.438 0.614 0.043 -0.175 0.24 1.969 -1.137
11670 2.021 0.282 0.033 -0.176 -0.287 0.557 -0.3 -0.795 0.737
17768 1.601 -0.47 0.155 -0.681 -.324 2.088 2.065 0.64 -0.96
244 1.117 -0.628 1.993 -0.385 0.929 0.722 1.006 0.816 -1.123
5328 2.775 -0.465 -0.58 -1.996 -0.077 0.472 -1.491 -0.713 0.542
14365 2.442 -0.726 1.871 -0.678 -.0776 -1.247 -1.215 -1.253 1.081
2313 0.863 -.0587 -1.56 0.146 -0.27 -0.977 -0.517 0.473 -.01
12342 1.59 -0.543 0.033 0.852 3.035 1.981 -0.349 -0.795 1.391
6558 3.594 1.286 1.013 1.517 -0.367 0.331 -0.204 -0.648 0.692
17157 5 2.56 -0.948 1.214 -1.558 -1.318 -0.793 0.673 1.119
18099 4.314 0.822 -0.09 1.001 -0.452 -0.338 -0.015 0.628 -1.044

Example: Using TD_SVM SQL Using Regression Model

CREATE VOLATILE TABLE svm_model_cal_housing AS (
 SELECT * FROM TD_SVM (
 ON cal_housing_ex_scaled
 USING
 InputColumns('medinc', 'houseage', 'averooms', 'avebedrms', 'population', 'aveoccup', 'latitude', 'longitude')
 ResponseColumn('MedHouseVal')
 ModelType('Regression')
 BatchSize(10)
 MaxIterNum(300)
 ) AS dt
) WITH DATA
ON COMMIT PRESERVE ROWS;

Output from TD_SVM

attribute predictor estimate value
-17 OneClass SVM NaN FALSE
-16 Kernel NaN LINEAR
-15 Intercept Scaling 1.000000 None
-14 Epsilon 0.100000 None
-13 LocalSGD Iterations 0.000000 None
-12 Nesterov NaN FALSE
-11 Momentum 0.000000 None
-10 Learning Rate (Final) 0.204246 None
-9 Learning Rate (Initial) 0.050000 None
-8 Number of Iterations 227.000000 CONVERGED
-7 Alpha 0.150000 Elasticnet
-6 Regularization 0.020000 ENABLED
-5 BIC 5.572674 None
-4 AIC -0.799777 None
-3 Number of Observations 15.000000 None
-2 MSE 0.285556 None
-1 Loss Function NaN EPSILON_INSENSITIVE
0 (Intercept) 2.191718 None
1 MedInc 1.226729 None
2 HouseAge .0232213 None
3 AveRooms -.332659 None
4 AveBedrms 0.000000 None
5 Population 0.113633 None
6 AveOccup -0.286434 None
7 Latitude -0.261509 None
8 Longitude -0.198519 None

Example: TD_SVM Classification iris Data Set

id sepal_length sepal_width petal_length petal_width variety
61 5.0 2.0 3.5 1.0 Versicolor
51 7.0 3.2 4.7 1.4 Versicolor
50 5.1 3.4 1.5 0.2 Setosa
59 6.6 2.9 4.6 1.3 Versicolor
38 4.9 3.6 1.4 0.1 Setosa
... ... ... ... ... ...
90 5.5 2.5 4.0 1.3 Versicolor
67 5.6 3.0 4.5 1.5 Versicolor
44 5.0 3.5 1.6 0.6 Setosa
42 4.5 2.3 1.3 0.3 Setosa
82 5.5 2.4 3.7 1.0 Versicolor

TD_SVM Call Using Classification Model

CREATE VOLATILE TABLE svm_model_iris_data AS (
SELECT * FROM TD_SVM (
 ON iris_data
 USING
 InputColumns('[1:4]')
 ResponseColumn('label')
 ModelType('Classification')
 BatchSize(10)
 MaxIterNum(300)
 ) AS dt
 ) WITH DATA
ON COMMIT PRESERVE ROWS;

Output from TD_SVM

attribute predictor estimate value
-17 OneClass SVM NaN FALSE
-16 Kernel NaN LINEAR
-15 Intercept Scaling 1.000000 None
-13 LocalSGD Iterations 0.000000 None
-12 Nesterov NaN FALSE
-11 Momentum 0.000000 None
-10 Learning Rate (Final) 0.677479 None
-9 Learning Rate (Initial) 0.050000 None
-8 Number of Iterations 56.000000 CONVERGED
-7 Alpha 0.150000 Elasticnet
-6 Regularization 0.020000 ENABLED
-5 BIC 20.794415 None
-4 AIC 10.000000 None
-3 Number of Observations 64.000000 None
-2 Loglik -0.000000 None
-1 Loss Function NaN HINGE
0 (Intercept) 0.43063 None
1 sepal_length 0.163885 None
2 sepal_width 0.907101 None
3 petal_length -1.411058 None
4 petal_width -0.527589 None