Teradata Package for Python Function Reference | 17.10 - drop - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference
- Product
- Teradata Package for Python
- Release Number
- 17.10
- Published
- April 2022
- Language
- English (United States)
- Last Update
- 2022-08-19
- lifecycle
- previous
- Product Category
- Teradata Vantage
- teradataml.dataframe.dataframe.DataFrame.drop = drop(self, labels=None, axis=0, columns=None)
- DESCRIPTION:
Drop specified labels from rows or columns.
Remove rows or columns by specifying label names and corresponding
axis, or by specifying the index or column names directly.
PARAMETERS:
labels:
Optional Argument. Required when columns is not provided.
Single label or list-like. Can be Index or column labels to drop depending on axis.
Types: str OR list of Strings (str)
axis:
Optional Argument.
0 or 'index' for index labels
1 or 'columns' for column labels
Default Values: 0
Permitted Values: 0, 1, 'index', 'columns'
Types: int OR str
columns:
Optional Argument. Required when labels is not provided.
Single label or list-like. This is an alternative to specifying axis=1 with labels.
Cannot specify both labels and columns.
Types: str OR list of Strings (str)
RETURNS:
teradataml DataFrame
RAISE:
TeradataMlException
EXAMPLES:
>>> load_example_data("dataframe","admissions_train")
>>> df = DataFrame('admissions_train')
>>> df
masters gpa stats programming admitted
id
5 no 3.44 Novice Novice 0
7 yes 2.33 Novice Novice 1
22 yes 3.46 Novice Beginner 0
17 no 3.83 Advanced Advanced 1
13 no 4.00 Advanced Novice 1
19 yes 1.98 Advanced Advanced 0
36 no 3.00 Advanced Novice 0
15 yes 4.00 Advanced Advanced 1
34 yes 3.85 Advanced Beginner 0
40 yes 3.95 Novice Beginner 0
# Drop columns
>>> df.drop(['stats', 'admitted'], axis=1)
programming masters gpa
id
5 Novice no 3.44
34 Beginner yes 3.85
13 Novice no 4.00
40 Beginner yes 3.95
22 Beginner yes 3.46
19 Advanced yes 1.98
36 Novice no 3.00
15 Advanced yes 4.00
7 Novice yes 2.33
17 Advanced no 3.83
>>> df.drop(columns=['stats', 'admitted'])
programming masters gpa
id
5 Novice no 3.44
34 Beginner yes 3.85
13 Novice no 4.00
19 Advanced yes 1.98
15 Advanced yes 4.00
40 Beginner yes 3.95
7 Novice yes 2.33
22 Beginner yes 3.46
36 Novice no 3.00
17 Advanced no 3.83
# Drop a row by index
>>> df1 = df[df.gpa == 4.00]
>>> df1
masters gpa stats programming admitted
id
13 no 4.0 Advanced Novice 1
29 yes 4.0 Novice Beginner 0
15 yes 4.0 Advanced Advanced 1
>>> df1.drop([13,15], axis=0)
masters gpa stats programming admitted
id
29 yes 4.0 Novice Beginner 0
>>>