Teradata Package for Python Function Reference | 17.10 - squeeze - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference
- Product
- Teradata Package for Python
- Release Number
- 17.10
- Published
- April 2022
- Language
- English (United States)
- Last Update
- 2022-08-19
- lifecycle
- previous
- Product Category
- Teradata Vantage
- teradataml.dataframe.dataframe.DataFrame.squeeze = squeeze(self, axis=None)
- DESCRIPTION:
Squeeze one-dimensional axis objects into scalars.
teradataml DataFrames with a single element are squeezed to a scalar.
teradataml DataFrames with a single column are squeezed to a Series.
Otherwise the object is unchanged.
Note: Currently only '1' and 'None' are supported for axis.
For now with axis = 0, the teradataml DataFrame is returned.
PARAMETERS:
axis:
Optional Argument.
A specific axis to squeeze. By default, all axes with
length equals one are squeezed.
Permitted Values: 0 or 'index', 1 or 'columns', None
Default: None
RETURNS:
teradataml DataFrame, teradataml Series, or scalar,
the projection after squeezing 'axis' or all the axes.
RAISES:
TeradataMlException
EXAMPLES:
>>> load_example_data("dataframe", "admissions_train")
>>> df = DataFrame("admissions_train")
>>> df
masters gpa stats programming admitted
id
22 yes 3.46 Novice Beginner 0
36 no 3.00 Advanced Novice 0
15 yes 4.00 Advanced Advanced 1
38 yes 2.65 Advanced Beginner 1
5 no 3.44 Novice Novice 0
17 no 3.83 Advanced Advanced 1
34 yes 3.85 Advanced Beginner 0
13 no 4.00 Advanced Novice 1
26 yes 3.57 Advanced Advanced 1
19 yes 1.98 Advanced Advanced 0
>>> gpa = df.select(["gpa"])
>>> gpa.squeeze()
0 4.00
1 2.33
2 3.46
3 3.83
4 4.00
5 2.65
6 3.57
7 3.44
8 3.85
9 3.95
Name: gpa, dtype: float64
>>> gpa.squeeze(axis = 1)
0 3.46
1 3.00
2 4.00
3 2.65
4 3.44
5 3.83
6 3.85
7 4.00
8 3.57
9 1.98
Name: gpa, dtype: float64
>>> gpa.squeeze(axis = 0)
gpa
0 3.46
1 3.00
2 4.00
3 2.65
4 3.44
5 3.83
6 3.85
7 4.00
8 3.57
9 1.98
>>> df = DataFrame.from_query('select gpa, stats from admissions_train where gpa=2.33')
>>> s = df.squeeze()
>>> s
gpa stats
0 2.33 Novice
>>> single_gpa = DataFrame.from_query('select gpa from admissions_train where gpa=2.33')
>>> single_gpa
gpa
0 2.33
>>> single_gpa.squeeze()
2.33
>>> single_gpa.squeeze(axis = 1)
0 2.33
Name: gpa, dtype: float64
>>> single_gpa.squeeze(axis = 0)
gpa
0 2.33