Teradata Package for Python Function Reference | 17.10 - dropna - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference
- Product
- Teradata Package for Python
- Release Number
- 17.10
- Published
- April 2022
- Language
- English (United States)
- Last Update
- 2022-08-19
- lifecycle
- previous
- Product Category
- Teradata Vantage
- teradataml.dataframe.dataframe.DataFrame.dropna = dropna(self, how='any', thresh=None, subset=None)
- DESCRIPTION:
Removes rows with null values.
PARAMETERS:
how:
Optional Argument.
Specifies how rows are removed.
'any' removes rows with at least one null value.
'all' removes rows with all null values.
Default Value: 'any'
Permitted Values: 'any' or 'all'
Types: str
thresh:
Optional Argument.
Specifies the minimum number of non null values in a row to include.
Types: int
subset:
Optional Argument.
Specifies list of column names to include, in array-like format.
Types: str OR list of Strings (str)
RETURNS:
teradataml DataFrame
RAISE:
TeradataMlException
EXAMPLES:
>>> load_example_data("dataframe","sales")
>>> df = DataFrame('sales')
>>> df
Feb Jan Mar Apr datetime
accounts
Jones LLC 200.0 150 140 180 04/01/2017
Yellow Inc 90.0 None None None 04/01/2017
Orange Inc 210.0 None None 250 04/01/2017
Blue Inc 90.0 50 95 101 04/01/2017
Alpha Co 210.0 200 215 250 04/01/2017
Red Inc 200.0 150 140 None 04/01/2017
# Drop the rows where at least one element is null.
>>> df.dropna()
Feb Jan Mar Apr datetime
accounts
Blue Inc 90.0 50 95 101 04/01/2017
Jones LLC 200.0 150 140 180 04/01/2017
Alpha Co 210.0 200 215 250 04/01/2017
# Drop the rows where all elements are nulls for columns 'Jan' and 'Mar'.
>>> df.dropna(how='all', subset=['Jan','Mar'])
Feb Jan Mar Apr datetime
accounts
Alpha Co 210.0 200 215 250 04/01/2017
Jones LLC 200.0 150 140 180 04/01/2017
Red Inc 200.0 150 140 None 04/01/2017
Blue Inc 90.0 50 95 101 04/01/2017
# Keep only the rows with at least 4 non null values.
>>> df.dropna(thresh=4)
Feb Jan Mar Apr datetime
accounts
Jones LLC 200.0 150 140 180 04/01/2017
Blue Inc 90.0 50 95 101 04/01/2017
Orange Inc 210.0 None None 250 04/01/2017
Alpha Co 210.0 200 215 250 04/01/2017
Red Inc 200.0 150 140 None 04/01/2017
# Keep only the rows with at least 5 non null values.
>>> df.dropna(thresh=5)
Feb Jan Mar Apr datetime
accounts
Alpha Co 210.0 200 215 250 04/01/2017
Jones LLC 200.0 150 140 180 04/01/2017
Blue Inc 90.0 50 95 101 04/01/2017
Red Inc 200.0 150 140 None 04/01/2017