NeuralNet Arguments - Aster Analytics
Teradata AsterĀ® Analytics Foundation User GuideUpdate 2
Product
Aster Analytics
Release Number
7.00.02
Published
September 2017
Language
English (United States)
Last Update
2018-04-17
dita:mapPath
uce1497542673292.ditamap
dita:ditavalPath
AA-notempfilter_pdf_output.ditaval
dita:id
B700-1022
lifecycle
previous
Product Category
Software
Preface
Overview
Conventions Used in This Guide
Typefaces
Notation Conventions
Command Shell Text Conventions
Contact Teradata Global Technical Support (GTS)
About Teradata Aster
About This Document
Revision History
Introduction
Analytics at Scale: Full Data Set Analysis
Introduction to Teradata Aster SQL-MapReduce
MapReduce
Aster Database SQL-MapReduce
SQL-MapReduce Query Syntax
SQL-MapReduce with Multiple Inputs
Benefits of Multiple-Input Functions
How Multiple Inputs are Processed
Types of SQL-MapReduce Inputs
Semantic Requirements for SQL-MapReduce Functions
Allowed Multiple-Input Structures
Rules for Number of Inputs by Type
Rules for Table Aliases
Number of Inputs
Use Cases and Examples for Multiple Inputs
Cogroup Use Case
Cogroup Example
Dimensional Input Use Case: Lookup Tables
Dimensional Input Example
Dimensional Input Use Case: Machine Learning
SQL-MapReduce Multiple Input FAQ
How are multiple inputs combined?
Can dimensional inputs include non-deterministic expressions?
Where will the output of the function be located?
Aster Analytics Function Product Bundles
Aster Analytics Functions by Product Bundle
Premium Path
Premium Relationship
Analytics Foundation
Premium Graph
Aster Analytics
Aster Scoring SDK
Aster Analytics Functions by Category
Time Series, Path, and Attribution Analysis
Pattern Matching with Teradata Aster nPath
Statistical Analysis
Text Analysis
Cluster Analysis
Naive Bayes
Ensemble Methods
Association Analysis
Graph Analysis
Aster Scoring SDK
Neural Networks
Data Transformation
Aster Database Utilities
Installing Aster Analytics Functions
Aster Analytics Function Version Numbers
Finding Function Version Numbers
Aster Analytics Compatibility Matrixes
Aster Analytics Function Packages
Downloading an Aster Analytics Function Package
Install and Uninstall Scripts
Getting Scripts for the Schema PUBLIC
Getting Uninstall Scripts for Releases AA 6.0 and Later
Getting Scripts for a Specified Schema
Installing an Aster Analytics Function Package
Setting Permissions to Allow Users to Run Functions
Testing the Functions
Updating an Aster Analytics Function Package
Installing a Function in a Specific Schema
ACT Commands for Managing Files
Usage Notes
Enclosing Database Object Names in Double Quotation Marks
Boolean Argument Values
Column Specification Arguments
DATE Columns
BC/BCE Timestamps
Creating a Timestamp Column
CREATE Privileges
Add Model File Locations to the Default Search Path
Database Connections with Authentication Cascading
Authentication Argument Syntax
Authentication Argument Descriptions
Example
Database Connections with SSL JDBC Connections
Error Message Delays
Sparse Tables and Dense Tables
Permanent Tables as Output of Driver-Based Functions
Input Table Aliases
Teradata Aster Extensions for KNIME
Aster Extensions for KNIME
KNIME Information
Installing Aster Extensions for KNIME
Installing Aster Extensions for KNIME
Connecting JDBC Driver to Aster Database
Configuring KNIME for Clusters Running on SSL
Enabling Automatic KNIME Updates
Upgrading Aster Extensions for KNIME
Deprecated Nodes
Uninstalling Aster Extensions from KNIME
Configuring the Database Connection
Displaying Table Columns
Displaying Aster Analytics Function Information
Displaying the Function Configuration Dialog Box
Displaying Field Descriptions
Assigning Tables or Columns to Fields
Displaying Temporary Table Names
Purpose and Appearance of Ports
Writing Function Results to Tables
Importing and Exporting Data
Generating SQL Code from a Workflow
Saving a Workflow
Importing or Exporting a Workflow
Simultaneous Workflows
Creating an App for the Teradata Aster AppCenter
KNIME Metanode Support
Using KNIME Visualization Tools
Using the KNIME Timer Info Node to Capture Run Time
Time Series, Path, and Attribution Analysis
Time Series, Path, and Attribution Analysis
Arima
Background
Nonseasonal ARIMA Model
Seasonal ARIMA Model
Usage
Arima Syntax
Arima Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
ArimaPredictor
Usage
ArimaPredictor Syntax
ArimaPredictor Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Attribution
Background
Attribution (Multiple-Input Version)
Usage
Attribution Syntax (Multiple Inputs)
Attribution (Multiple-Input Version) Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Attribution (Single-Input Version)
Usage
Attribution Syntax (Single Input)
Attribution (Single-Input Version) Arguments
Input
Output
Examples
Example 1: One Regular Model, Multiple Optional Models
Input
SQL-MapReduce Call
Output
Example 2: Multiple Regular Models, One Optional Model
Input
SQL-MapReduce Call
Output
Single-Input Attribution Example 3: Dynamic Weighted Distribution Models
Input
SQL-MapReduce Call
Output
Single-Input Attribution Example 4: Window Models
Input
SQL-MapReduce Call
Output
Single-Input Attribution Example 5: Single-Window Model
Input
SQL-MapReduce Call
Output
Single-Input Attribution Example 6: Unused Segment Windows
Input
SQL-MapReduce Call
Output
Burst
Usage
Burst Syntax
Burst Arguments
Input
Output
Examples
Example 1: Time_Interval Argument
Input
SQL-MapReduce Call
Output
Example 2: Time_Table Argument
Input
SQL-MapReduce Call
Output
Change-Point Detection Functions
Background
Retrospective Change-Point Detection
Real-Time Change-Point Detection
ChangePointDetection
Usage
ChangePointDetection Syntax
ChangePointDetection Arguments
Input
Output
Examples
Example 1: Two Series, Default Options
Input
SQL-MapReduce Call
Output
Example 2: One Series, Default Options
Input
SQL-MapReduce Call
Output
Example 3: One Series, VERBOSE Output
Input
SQL-MapReduce Call
Output
Example 4: One Series, Penalty 10
Input
SQL-MapReduce Call
Output
Example 5: One Series, SEGMENT Output, Penalty 10
Input
SQL-MapReduce Call
Output
Example 6: One Series, Penalty 20, Linear Regression
Input
SQL-MapReduce Call
Output
RtChangePointDetection
Usage
RtChangePointDetection Syntax
RtChangePointDetection Arguments
Input
Output
Examples
Example 1: Threshold 10, Window Size 3, Default Output
Input
SQL-MapReduce Call
Output
Example 2: Threshold 20, Window Size 3, VERBOSE Output
Input
SQL-MapReduce Call
Output
Example 3: Threshold 100, Window Size 3, Default Output
Input
SQL-MapReduce Call
Output
Convergent Cross-Mapping
CCMPrepare
Usage
CCMPrepare Syntax
Input
Output
Example
Input
SQL-MapReduce Call
Output
CCM
Usage
CCM Syntax
CCM Arguments
Input
Output
Example: Simulated Data
Input
Step 1 SQL-MapReduce Call
Step 1 Output
Step 2 SQL-MapReduce Call
Step 2 Output
DTW
Usage
DTW Syntax
DTW Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Fast Fourier Transform Functions
Background
FFT
Background
Usage
FFT Syntax
FFT Arguments
Input
Output
Examples
Example 1: 1D Signal
Input
SQL-MapReduce Call
Output
Example 2: 2D Signal
Input
SQL-MapReduce Call
Output
Example 3: 3D Signal
Input
SQL-MapReduce Call
Output
IFFT
Usage
IFFT Syntax
IFFT Arguments
Input
Output
Examples
Example 1: 1D Signal
Input
SQL-MapReduce Call
Output
Example 2: 2D Signal
Input
SQL-MapReduce Call
Output
Example 3: 3D Signal
Input
SQL-MapReduce Call
Output
FrequentPaths
Background
Usage
FrequentPaths Syntax
FrequentPaths Arguments
Input
Output
Examples
Example 1: ItemColumn Argument Specified
Input
SQL-MapReduce Call
Output
Example 2: ItemDefinition Argument Specified
Input
SQL-MapReduce Call
Output
Example 3: GroupByColumns Argument Specified
Input
SQL-MapReduce Call
Output
Example 4: SEQUENCEPATTERNRELATION Argument Specified
Input
SQL-MapReduce Call
Output
Example 5: PathFilters Argument Specified
Input
SQL-MapReduce Call
Output
Example 6: Output Only Closed Patterns
Input
SQL-MapReduce Call
Output
Example 7: Using nPath and FrequentPaths to Select Sequences
Input
Create the FrequentPaths Input Table
SQL-MapReduce Call
Output
Interpolator
Usage
Interpolator Syntax
Interpolator Arguments
Input
Output
Examples
Input
Example 1: Aggregation
SQL-MapReduce Call
Output
Example 2: Constant Interpolation
SQL-MapReduce Call
Output
Example 3: Linear Interpolation
SQL-MapReduce Call
Output
Example 4: Median Interpolation
SQL-MapReduce Call
Output
Example 5: Spline Interpolation
SQL-MapReduce Call
Output
Example 6: Loess Interpolation
SQL-MapReduce Call
Output
Path Analysis Functions
Path_Generator
Usage
Path_Generator Syntax
Path_Generator Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Path_Summarizer
Usage
Path_Summarizer Syntax
Path_Summarizer Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Path_Start
Usage
Path_Start Syntax
Path_Start Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Path_Analyzer
Usage
Path_Analyzer Syntax
Path_Analyzer Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
SAX2
Background
Usage
SAX2 Syntax (Single Input)
SAX2 Syntax (Multiple Inputs)
SAX2 Arguments
Input
Output
Examples
Input
Example 1: Global Window, Default Output
SQL-MapReduce Call
Output
Example 2: Sliding Window, Default Output
SQL-MapReduce Call
Output
Example 3: Sliding Window, Bitmap Output
SQL-MapReduce Call
Output
Example 4: Sliding Window, Character Output
SQL-MapReduce Call
Output
Example 5: Multiple-Input Version
SQL-MapReduce Call
Output
SeriesSplitter
Background
Usage
SeriesSplitter Syntax
SeriesSplitter Arguments
Input
Output
Examples
Input
Example 1: Partition Splitter
SQL-MapReduce Call
Output
Example 2: Using SeriesSplitter with Interpolator
SQL-MapReduce Calls
Troubleshooting
Problem: Invoking a function using SeriesSplitter does not improve execution time.
Workaround:
Sessionize
Usage
Sessionize Syntax
Sessionize Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Shapelet Functions
Overview
UnsupervisedShapelet
Usage
UnsupervisedShapelet Syntax
UnsupervisedShapelet Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Troubleshooting
Problem: The function runs slowly for large input data sets.
Workarounds:
Problem: Clustering accuracy is not good enough.
Workarounds:
SupervisedShapeletTrainer
Usage
SupervisedShapeletTrainer Syntax
SupervisedShapeletTrainer Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Troubleshooting
Problem: The function runs slowly for large input data sets.
Workarounds:
Problem: Classification accuracy is not good enough.
Workarounds:
SupervisedShapeletClassifier
Usage
SupervisedShapeletClassifier Syntax
SupervisedShapeletClassifier Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
TimeSeriesOrders
Usage
TimeSeriesOrders Syntax
TimeSeriesOrders Arguments
Input
Output
Examples
Example 1: Specify PartitionColumns Argument
Input
SQL-MapReduce Call
Output
Example 2: Omit PartitionColumns Argument
Input
SQL-MapReduce Call
Output
VARMAX
Usage
VARMAX Syntax
VARMAX Arguments
Input
Output
Examples
Input
Example 1: VARMAX without Exogenous Model
SQL-MapReduce Call
Output
Example 2: VARMAX with Exogenous Model
SQL-MapReduce Call
Output
Example 3: VARMAX with Seasonal Model and without Exogenous Model
SQL-MapReduce Call
Output
Example 4: VARMAX with All Models
SQL-MapReduce Call
Output
Example 5: VARMAX with Orders Table with One Time Series
Input
SQL-MapReduce Call
Output
Example 6: VARMAX with Orders Table with Two Time Series
Input
SQL-MapReduce Call
Output
Example 7: VARMAX with Existing Orders Table
Input
SQL-MapReduce Call
Output
Wavelet Transform Functions
DWT
Background
Usage
DWT Syntax
DWT Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
DWT2D
Background
Usage
DWT2D Syntax
DWT2D Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
IDWT
Usage
IDWT Syntax
IDWT Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
IDWT2D
Usage
IDWT2D Syntax
IDWT2D Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Pattern Matching with TeradataĀ Aster nPath
nPath
Usage
nPath Syntax
nPath Arguments
Input
Output
Symbols
LAG and LEAD Expressions in Symbol Predicates
LAG Expression Syntax
LAG and LEAD Expression Rules
LAG and LEAD Expressions Example 1
Input
SQL-MapReduce Call
Output
LAG and LEAD Expressions Example 2
Input
SQL-MapReduce Call
Output
Patterns
Greedy Pattern Matching
Filters
Example
Input
SQL-MapReduce Call
Output
Results
Example 1
Input
SQL-MapReduce Call
Output
Example 2
Input
SQL-MapReduce Call
Output
Example 3
Input
SQL-MapReduce Call
Output
Example 4
Input
SQL-MapReduce Call
Output
nPath Examples
Input
Example 1: Accumulate Pages Visited in Each Session
SQL-MapReduce Call
Output
Example 2: Find Sessions That Start at Home Page and Visit Page1
SQL-MapReduce Call
Output
Example 3: Find Paths to Checkout Page for Purchases Over $200
SQL-MapReduce Call
Output
Example 4: Use OVERLAPPING Mode
SQL-MapReduce Call
Output
Example 5: Find First Product with Multiple Referrers in Any Session
SQL-MapReduce Call
Output
Example 6: Find Data for Sessions that Checked 3-6 Products
SQL-MapReduce Call
Output
Example 7: Find Data for Sessions that Checked at Least 3 Products
SQL-MapReduce Call
Output
Example 8: Multiple Partitioned Input Tables and Dimension Input Table
Input
SQL-MapReduce Call
Output
Statistical Analysis
Approximate Distinct Count
Background
Usage
Approximate Distinct Count Syntax
Approximate Distinct Count Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Approximate Percentile
Background
Usage
Approximate Percentile Syntax
Approximate Percentile Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
ConfusionMatrix
Background
Usage
ConfusionMatrix Syntax
ConfusionMatrix Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Correlation
Usage
Correlation Syntax
Correlation Arguments
Input
Output
Examples
Input
Example 1: Including PARTITION BY Clause
SQL-MapReduce Call
Output
Example 2: Omitting PARTITION BY Clause
SQL-MapReduce Call
Output
CoxPH
Background
Usage
CoxPH Syntax
CoxPH Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
CoxPredict
Background
Usage
CoxPredict Syntax
CoxPredict Arguments
Input
Output
Examples
Input
Example 1: No Reference Values Provided
SQL-MapReduce Call
Output
Example 2: Partition by Name/ID and No Reference Values
SQL-MapReduce Call
Output
Example 3: Use Reference Values
SQL-MapReduce Call
Output
Example 4: Use Reference values and Partition by id
SQL-MapReduce Call
Output
Example 5: Use Units Values
SQL-MapReduce Call
Output
CoxSurvFit
Background
Usage
CoxSurvFit Syntax
CoxSurvFit Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
CrossValidation
Usage
CrossValidation Syntax
CrossValidation Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Distribution Matching
Hypothesis-Test Mode
Usage
Hypothesis-Test Mode Syntax (Continuous Distributions)
Option 1: For Multiple-Node Data Sets
Option 2: For Single-Node Data Sets
Hypothesis-Test Mode Syntax (Discrete Distributions)
Option 1: For Multiple-Node Data Sets
Option 2: For Single-Node Data Sets and Any CvM Test
Hypothesis-Test Mode Arguments
Input
Output
Results (statistics and p-values)
Examples
Example 1: Normality Tests without 'groupingColumns'
Input
SQL-MapReduce Call
Output
Example 2: Normality Tests with 'groupingColumns'
Input
SQL-MapReduce Call
Output
Best-Match Mode
Usage
Best-Match Mode Syntax (DOUBLE PRECISION Input)
Best-Match Mode Syntax (INTEGER Input)
Best-Match Mode Arguments
Input
Output
Examples
Example 1: Input Values of Type DOUBLE PRECISION
Input
SQL-MapReduce Call
Output
Example 2: Input Values of Type INTEGER
Input
SQL-MapReduce Call
Output
FMeasure
Background
Usage
FMeasure Syntax
FMeasure Arguments
Input
Output
Examples
Input
Example 1: Output All Classes
SQL-MapReduce Call
Output
Example 2: Output Specified Classes
SQL-MapReduce Call
Output
Generalized Linear Model Functions
GLM
Background
Usage
GLM Syntax
GLM Arguments
Input
Onscreen Output
Columns
Rows
Output Table
Odds Ratio and Confidence Intervals
Goodness-of-Fit Tests
Deviance
Wald Test
Rao's Score Test
Pearsonās Chi-squared Statistic
Examples
Example 1: Logistic Regression Analysis with Intercept
Input
SQL-MapReduce Call
Output
Example 2: Logistic Regression Analysis with Step Argument
Input
SQL-MapReduce Call
Output
Example 3: Gaussian Distribution Analysis with Default Options
Input
SQL-MapReduce Call
Output
GLMPredict
Usage
GLMPredict Syntax
GLMPredict Arguments
Input
Output
Examples
Example 1: Logistic Distribution Prediction
Input
SQL-MapReduce Call
Output
Categorizing Column fitted_value
Prediction Accuracy
Example 2: Gaussian Distribution Prediction
Input
SQL-MapReduce Call
Output
RMSE
Example 3: Multiple-Input SQL-MapReduce Call
Input
SQL-MapReduce Call
Output
GLM2
Background
Usage
GLM2 Syntax
GLM2 Arguments
Input
Output
Examples
Example 1: LASSO for Poisson Regression Analysis
Input
SQL-MapReduce Call
Output
Example 2: Ridge for Logistic Regression Analysis
Input
SQL-MapReduce Call
Output
Example 3: Elastic Net for Gaussian Regression Analysis
Input
SQL-MapReduce
Output
Example 4: Using the Lambda Argument
Input
SQL-MapReduce Call
Output
GLM2Predict
Usage
GLM2Predict Syntax
GLM2Predict Arguments
Input
Output
Examples
Example 1: Elastic Net for Gaussian Regression Prediction
Input
SQL-MapReduce Call
Output
Example 2: Ridge for Logistic Regression Prediction
Input
SQL-MapReduce Call
Output
Example 3: Using the Lambda Argument
Input
SQL-MapReduce Call
Output
Hidden Markov Model Functions
Overview of Hidden Markov Model
Models and Descriptions
Aster Distributed Platforms
HMMUnsupervisedLearner
Usage
HMMUnsupervisedLearner Syntax
HMMUnsupervisedLearner Arguments
Input
Output
Example
Loan Default Prediction
Input
SQL-MapReduce Call
Output
HMMSupervisedLearner
Usage
HMMSupervisedLearner Syntax
HMMSupervisedLearner Arguments
Input
Output
Example
Customer Loyalty Prediction
Input
SQL-MapReduce Call
Output
HMMEvaluator
Usage
HMMEvaluator Syntax
HMMEvaluator Arguments
Input
Output
Example
Loan Default Prediction (from HMMUnsupervisedLearner)
Input
SQL-MapReduce Call
Output
HMMDecoder
Usage
HMMDecoder Syntax
HMMDecoder Arguments
Input
Output
Examples
Example 1: Loan Default Prediction (from Unsupervised Learner)
Input
SQL-MapReduce Call
Output
Example 2: Customer Loyalty Prediction (from Supervised Learner)
Input
SQL-MapReduce Call
Output
Example 3: Part-of-Speech Tagging
Input
SQL-MapReduce Call
Output
Example 4: Bank Customer Churn
Input
SQL-MapReduce Call
Output
Histogram (Hist)
Background
Sturges' Algorithm
Scott's Algorithm
Usage
Histogram (Hist) Syntax
Histogram (Hist) Arguments
Input
Output
Examples
Input
Example 1: Bins with Sturges Algorithm
SQL-MapReduce Call
Output
Example 2: Bins with Scott Algorithm
SQL-MapReduce Call
Output
Example 3: You Specify Bins
SQL-MapReduce Call
Output
KNN
Background
Usage
KNN Syntax
KNN Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
User-Defined Distance Metric
LARS Functions
Background
LARS
Usage
LARS Syntax
LARS Arguments
Input
Output
Interpreting the Output
Examples
Input
Example 1: Method ('lar')
SQL-MapReduce Call
Output
Example 2: Method ('lasso')
SQL-MapReduce Call
Output
LARSPredict
Usage
LARSPredict Syntax
LARSPredict Arguments
Input
Output
Examples
Example 1: Model ('diabetes_lars')
Input
SQL-MapReduce Call
Output
Example 2: Model ('diabetes_lasso')
Input
SQL-MapReduce Call
Output
Linear Regression
Background
Usage
Linear Regression Syntax
Input
Output
Example
Input
SQL-MapReduce Call
Output
LinRegPredict
Usage
LinRegPredict Syntax
LinRegPredict Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
LRTEST
Background
Usage
LRTEST Syntax
LRTEST Arguments
Input
Output
Example
Input
SQL-MapReduce Call 1 - Create model based on temp variable
Output
SQL-MapReduce Call 2 - Create null model
Output
SQL-MapReduce Call 3 - LRTEST
Output
Moving Average Functions
CMAVG
Background
Usage
CMAVG Syntax
CMAVG Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
EMAVG
Background
Usage
EMAVG Syntax
EMAVG Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
SMAVG
Background
Usage
SMAVG Syntax
SMAVG Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
WMAVG
Background
Usage
WMAVG Syntax
WMAVG Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Percentile
Usage
Percentile Syntax
Percentile Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Principal Component Analysis (PCA)
Background
Usage
Principal Component Analysis (PCA) Syntax
Principal Component Analysis (PCA) Arguments
Input
Output
Example
Input
Normalizing the Input Variables
SQL-MapReduce Call
Output
Output for Unnormalized Input
PCAPlot
Usage
PCAPlot Syntax
PCAPlot Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Principal Component Regression
PCR Input
PCR SQL-MapReduce Call
PCR Output
RandomSample
Usage
RandomSample Syntax
RandomSample Arguments
Input
Output
Examples
Input
Example 1: Basic Sampling (Weighted)
SQL-MapReduce Call
Output
Example 2: KMeans++ Sampling
SQL-MapReduce Call
Output
Example 3: KMeans|| Sampling
Create and Populate Input Table
SQL-MapReduce Call
Output
Receiver Operating Characteristic (ROC)
Background
Usage
ROC Syntax
ROC Arguments
Input
Output
Examples
Example 1: Show Only ROC Values
Input
SQL-MapReduce Call
Output
Example 2: Show Only AUC Values
Input
SQL-MapReduce Call
Output
Example 3: Show AUC and Gini Values
Input
SQL-MapReduce Call
Output
Sample
Usage
Sample Syntax
Unconditional Sampling, Single Sample Rate
Unconditional Sampling, Approximate Sample Size
Conditional Simple Sampling, Single Sample Rate
Conditional Sampling, Variable Sample Rates
Conditional Sampling, Approximate Sample Size
Conditional Sampling, Variable Approximate Sample Sizes
Sample Arguments
Input
Output
Examples
Input
Example 1: Unconditional Sampling with Single Sample Rate
SQL-MapReduce Call
Output
Example 2: Conditional Sampling with Variable Sample Rate
SQL-MapReduce Call
Output
Example 3: Unconditional Sampling with Total (Single) Approximate SampleSize
SQL-MapReduce Call
Output
Example 4: Conditional Sampling with Variable Approximate SampleSize
SQL-MapReduce Call
Output
Shapley Value Functions
Background
GenerateCombination
Usage
GenerateCombination Syntax
Input
Output
Examples
SortCombination
Usage
SortCombination Syntax
SortCombination Arguments
Input
Output
Examples
AddOnePlayer
Usage
AddOnePlayer Syntax
AddOnePlayer Arguments
Input
Output
SQL Statements to Compute the Shapley Value
Examples
Example 1: Use GenerateCombination and AddOnePlayer
Input
Generate Payoff Tables for Each Combination
SQL-MapReduce Call
Output
Add One Player to Each Combination
SQL-MapReduce Call
Output
Compute Shapley Values
SQL-MapReduce Call
Output
Example 2: Use nPath to Create Input to GenerateCombination
Input
Generate and Load Click-Stream Sequences
Output
Use nPath to Generate Conversion Counts
Output
Use nPath to Generate Total Counts
Output
Compute Shapley Values
Output
Compute Augmented Characteristic Values Table (ACVS)
Output
Compute Unnormalized Shapley Values from CVS and ACVS Table
Output
Support Vector Machine (SVM) Functions
SparseSVM Functions
SparseSVMTrainer
Usage
SparseSVMTrainer Syntax
SparseSVMTrainer Arguments
Input
Output
Example
Input
Create Input Table in Sparse Format
Create Training and Testing Tables
SQL-MapReduce Call
Output
SparseSVMPredictor
Usage
SparseSVMPredictor Syntax
SparseSVMPredictor Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Check Prediction Accuracy
SVMModelPrinter
Usage
SVMModelPrinter Syntax
SVMModelPrinter Arguments
Input
Output
Examples
Example 1: ShowSummary('true')
SQL-MapReduce Call
Output
Example 2: ShowSummary('false')
SQL-MapReduce Call
Output
DenseSVM Functions
DenseSVMTrainer
Usage
DenseSVMTrainer Syntax
DenseSVMTrainer Arguments
Input
Output
Examples
Input
Train and Test Set
Example 1: Linear Model
SQL-MapReduce Call
Output
Example 2: Polynomial Model
SQL-MapReduce Call
Output
Example 3: Radial Basis Model (RBF) Model
SQL-MapReduce Call
Output
Example 4: Sigmoid Model
SQL-MapReduce Call
Output
DenseSVMPredictor
Usage
DenseSVMPredictor Syntax
DenseSVMPredictor Arguments
Input
Output
Examples
Input
Example 1: Linear Model
SQL-MapReduce Call
Output
Example 2: Polynomial Model
SQL-MapReduce Call
Output
Example 3: Radial Basis Model (RBF) Model
SQL-MapReduce Call
Output
Example 4: Sigmoid Model
SQL-MapReduce Call
Output
DenseSVMModelPrinter
Usage
DenseSVMModelPrinter Syntax
DenseSVMModelPrinter Arguments
Input
Output
Example
Input
SQL-MapReduce Call with ShowSummary('false')
Output
SQL-MapReduce Call with ShowSummary('true')
Output
VectorDistance
Background
Cosine Similarity
Euclidean Distance
Manhattan Distance
Binary Distance
Usage
VectorDistance Syntax
VectorDistance Arguments
Input
Output
Examples
Input
Example 1: Default Thresholds
SQL-MapReduce Call
Output
Example 2: Specified Thresholds
SQL-MapReduce Call
Output
VWAP
Usage
VWAP Syntax
VWAP Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Text Analysis
Summary of Text Analysis Function Families
Latent Dirichlet Allocation (LDA) Functions
Background
LDATrainer
Usage
LDATrainer Syntax
LDATrainer Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
LDAInference
Usage
LDAInference Syntax
LDAInference Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
LDATopicPrinter
Usage
LDATopicPrinter Syntax
LDATopicPrinter Arguments
Input
Output
Examples
Input
Example 1: ShowSummary ('true')
SQL-MapReduce Call
Output
Example 2: OutputByWord ('false')
SQL-MapReduce Call
Output
Example 3: ShowWordWeight('true') and ShowWordCount('true')
SQL-MapReduce Call
Output
Levenshtein Distance (LDist)
Usage
Levenshtein Distance (LDist) Syntax
Levenshtein Distance (LDist) Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Naive Bayes Text Classifier
NaiveBayesTextClassifierTrainer
Usage
NaiveBayesTextClassifierTrainer Syntax
NaiveBayesTextClassifierTrainer Arguments
Input
Output
Example
Input
SQL Statement to Create Model Table
Output
NaiveBayesTextClassifierPredict
Usage
NaiveBayesTextClassifierPredict Syntax
NaiveBayesTextClassifierPredict Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Named Entity Recognition (NER) Functions
NER Functions (CRF Model Implementation)
NERTrainer
Usage
NERTrainer Syntax
NERTrainer Arguments
Feature Template
Part 1 of the Example Template File
Part 2 of the Example Template File
Input
Output
Example
Input
SQL-MapReduce Call
Output
NER
Usage
NER Syntax
NER Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
NEREvaluator
Usage
NEREvaluator Syntax
NEREvaluator Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
NER Functions (Maximum Entropy Model Implementation)
TrainNamedEntityFinder
Usage
TrainNamedEntityFinder Syntax
TrainNamedEntityFinder Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
FindNamedEntity
Usage
FindNamedEntity Syntax
FindNamedEntity Arguments
Creating the Table of Default Models
Input
Output
Example
Input
SQL-MapReduce Call
Output
Evaluate Named Entity Finder
Usage
Evaluate Named Entity Finder Syntax
Evaluate Named Entity Finder Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
nGram
Usage
nGram Syntax
nGram Arguments
Input
Output
Examples
Input
Example 1: Overlapping ('true') and TotalGramCount ('true')
SQL-MapReduce Call
Output
Example 2: Overlapping ('false') and TotalGramCount ('false')
SQL-MapReduce Call
Output
POSTagger
Background
Usage
POSTagger Syntax
POSTagger Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Sentenizer
Usage
Sentenizer Syntax
Sentenizer Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Sentiment Extraction Functions
Background
TrainSentimentExtractor
Usage
TrainSentimentExtractor Syntax
TrainSentimentExtractor Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
ExtractSentiment
Usage
ExtractSentiment Syntax
ExtractSentiment Arguments
Input
Output
Examples
Prerequisites
Input
Example 1: Model ('dictionary'), Level ('document')
SQL-MapReduce Call
Output
Example 2: Model ('dictionary'), Level ('sentence')
SQL-MapReduce Call
Output
Example 3: Model ('classification:default_sentiment_classification_model.bin')
SQL-MapReduce Call
Output
Example 4: Model ('classification:sentimentmodel1.bin')
SQL-MapReduce Call
Output
Example 5: Dictionary Table Instead of Model File
SQL-MapReduce Call
Output
EvaluateSentimentExtractor
Usage
EvaluateSentimentExtractor Syntax
EvaluateSentimentExtractor Arguments
Input
Output
Example
Input
Example 1: Model ('dictionary')
SQL-MapReduce Call
Output
Example 2: Model ('classification:default_sentiment_classification_model.bin')
SQL-MapReduce Call
Output
Example 3: Model ('classification:sentimentmodel1.bin')
SQL-MapReduce Call
Output
Example 4: Dictionary Table Instead of Model File
SQL-MapReduce Call
Output
Text Classifier
Background
TextClassifierTrainer
Usage
TextClassifierTrainer Syntax
TextClassifierTrainer Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
TextClassifier
Usage
TextClassifier Syntax
TextClassifier Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
TextClassifierEvaluator
Usage
TextClassifierEvaluator Syntax
TextClassifierEvaluator Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
TextChunker
Background
Usage
TextChunker Syntax
TextChunker Arguments
Input
Output
Examples
Example 1: Using Output from POSTagger
Input
SQL-MapReduce Call
Output
Example 2. Using Output from Sentenizer and POSTagger
Input
SQL-MapReduce Call
Output
TextMorph
Background
Usage
TextMorph Syntax
TextMorph Arguments
Input
Output
Examples
Input
Example 1: SingleOutputĀ ('true')
SQL-MapReduce Call
Output
Example 2: SingleOutputĀ ('false')
SQL-MapReduce Call
Output
Example 3: POSĀ ('noun', 'verb') and SingleOutputĀ ('false')
SQL-MapReduce Call
Output
Example 4: POSĀ ('noun', 'verb') and SingleOutputĀ ('true')
SQL-MapReduce Call
Output
Example 5: Using TextMorph with POSTagger and TextTagging
POSTagger Input
Statement to Create POSTagger Output Table
POSTagger Output and TextMorph Input
Statement to Create TextMorph Output Table
TextMorph Output and TextTagging Input
SQL-MapReduce Call to TextTagging
TextTagging Output
Text_Parser
Background
Usage
Text_Parser Syntax
Text_Parser Arguments
Input
Output
Examples
Example 1: With StopWords and without StemmingExceptions
Input
SQL-MapReduce Call
Output
Example 2: With StemmingExceptions and without StopWords
Input
SQL-MapReduce Call
Output
TextTagging
Usage
TextTagging Syntax
TextTagging Arguments
Defining Tagging Rules
Input
Output
Examples
Input
Example 1: Specify Rules Argument
SQL-MapReduce Call
Output
Example 2: Specify Rules Table
SQL-MapReduce Call
Output
Example 3: Specify Dictionary File in Rules Argument
SQL-MapReduce Call
Output
Example 4: Specify Superdist in Rules Argument
SQL-MapReduce Call
Output
TextTokenizer
Usage
TextTokenizer Syntax
TextTokenizer Arguments
Input
Output
Examples
Example 1: Chinese Tokenization
Input
SQL-MapReduce Call 1
Output
SQL-MapReduce Call 2
Output
Example 2: Japanese Tokenization
Input
SQL-MapReduce Call 1
Output
SQL-MapReduce Call 2
Output
Example 3: English Tokenization
Input
SQL-MapReduce Call
Output
TF_IDF
Background
Usage
TF_IDF Syntax
TF_IDF Arguments
Input
Output
Examples
Example 1: TF_IDF on Tokenized Training Document Set
Input
Step 1: Create Tokenized Training Document Set
Step 2: Create Input for TF_IDF Function
SQL-MapReduce Call
Output
Example 2: TF_IDF on Tokenized Test Set
Input
Step 1. Create Tokenized Test Document Set
Step 2. Create Input for TF_IDF Function
SQL-MapReduce Call
Output
Cluster Analysis
Cluster Analysis
Canopy
Background
Usage
Canopy Syntax
Canopy Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Gaussian Mixture Model Functions
GMMFit
Usage
GMMFit Syntax
GMMFit Arguments
Input
Output
Examples
Input
Split Input into Training and Testing Data Sets
Example 1: Basic GMM, Spherical Covariance, Packed Output
Input
SQL-MapReduce Call
Output
Example 2: Basic GMM, Diagonal Covariance, Unpacked Output
SQL-MapReduce Call
Output
Example 3: DP-GMM, Full Covariance, Unpacked Output
SQL-MapReduce Call
Output
GMMPredict
Usage
GMMPredict Syntax
GMMPredict Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
GMMProfile
Usage
GMMProfile Syntax
Input
Output
Examples
Example 1
Input
SQL-MapReduce Call
Output
Example 2
Input
SQL-MapReduce Call
Output
Example 3
Input
SQL-MapReduce Call
Output
KMeans
Background
Usage
KMeans Syntax
KMeans Arguments
Input
Output
Examples
Input
Example 1: NumClusters and UnpackColumns('false') by Default
SQL-MapReduce Call
Output
Example 2: NumClusters and UnpackColumns('true')
SQL-MapReduce Call
Output
Example 3: InitialSeeds and ClusteredOutput
SQL-MapReduce Call
Output
Example 4: CentroidsTable and ClusteredOutput
SQL-MapReduce Call
Output
KMeansPlot
Usage
KMeansPlot Syntax
KMeansPlot Arguments
Input
Output
Example
Input
SQL-MapReference Call
Output
KModes
Usage
KModes Syntax
KModes Arguments
Input
Output
Examples
Input
Example 1: Using InitialSeedTable
SQL-MapReduce Call
Output
Example 2: Using NumClusters
SQL-MapReduce Call
Output
KModesPredict
Usage
KModesPredict Syntax
KModesPredict Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Minhash
Background
Usage
Minhash Syntax
Minhash Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Naive Bayes
Overview of Naive Bayes
Naive Bayes Classifier
NaiveBayesMap and NaiveBayesReduce
Usage
Naive Bayes Syntax
Naive Bayes Arguments
Input
Output
Naive Bayes Example
NaiveBayesMap Input: Training Table
Split Input into Training and Testing Data Sets
SQL-MapReduce Call to Generate the Model
NaiveBayesReduce and NaiveBayesMap Output: Model Table
NaiveBayesPredict Input
SQL-MapReduce Call to Predict Outcomes of Test Table Data
NaiveBayesPredict Output: Predict Outcomes Table
Prediction Accuracy
NaiveBayesPredict
Usage
NaiveBayesPredict Syntax
NaiveBayesPredict Arguments
Input
Output
Naive Bayes Example
NaiveBayesMap Input: Training Table
Split Input into Training and Testing Data Sets
SQL-MapReduce Call to Generate the Model
NaiveBayesReduce and NaiveBayesMap Output: Model Table
NaiveBayesPredict Input
SQL-MapReduce Call to Predict Outcomes of Test Table Data
NaiveBayesPredict Output: Predict Outcomes Table
Prediction Accuracy
Ensemble Methods
Introduction to Decision Trees
Decision Tree Basics
Decision Tree Advantages
Decision Tree Disadvantages
Boosting
Single Decision Tree Functions
Single_Tree_Drive
Background
Tree Building
Single_Tree_Drive Helper Functions
Usage
Single_Tree_Drive Syntax
Single_Tree_Drive Arguments
Input
Output
Examples
Example 1
Input
Split Input into Training and Testing Data Sets
Attribute Tables
Response Tables
SQL-MapReduce Call
Output
Example 2
Input
SQL-MapReduce Call
Output
Single_Tree_Predict
Usage
Single_Tree_Predict Syntax
Single_Tree_Predict Arguments
Input
Output
Examples
Example 1
Input
SQL-MapReduce Call
Output
Prediction Accuracy
Example 2: Creating Input for ROC
Input
SQL-MapReduce Call to Single_Tree_Drive
Single_Tree_Drive Output
SQL-MapReduce Call to Single_Tree_Predict
Single_Tree_Predict Output
Random Forest Functions
Background
Forest_Drive
Usage
Forest_Drive Syntax
Forest_Drive Arguments
Input
Output
Examples
Example 1: Classification Tree without Out-of-Bag Error
Input
SQL-MapReduce Call
Output
Example 2: Classification Tree with Out-of-Bag Error
Input
SQL-MapReduce Call
Output
Example 3: Regression Tree with Out-of-Bag Error
Input
SQL-MapReduce Call
Output
Forest_Predict
Usage
Forest_Predict Syntax
Forest_Predict Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Prediction Accuracy
Forest_Analyze
Usage
Forest_Analyze Syntax
Forest_Analyze Arguments
Input
Output
Examples
Input
Example 1
SQL-MapReduce Call
Output
Example 2: Calculating Variable importance
SQL-MapReduce Call
Output
Best Practices
AdaBoost Functions
Background
AdaBoost_Drive
Usage
AdaBoost_Drive Syntax
AdaBoost_Drive Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
AdaBoost_Predict
Usage
AdaBoost_Predict Syntax
AdaBoost_Predict Arguments
Input
Output
Examples
Example 1
Input
SQL-MapReduce Call
Output
Prediction Accuracy
Example 2: Creating Input for ROC
Input
SQL-MapReduce Call to AdaBoost_Drive
AdaBoost_Drive Output
SQL-MapReduce Call to AdaBoost_Predict
AdaBoost_Predict Output
XGBoost Functions
XGBoost_Drive
Usage
XGBoost_Drive Syntax
XGBoost_Drive Arguments
Input
Output
Examples
Example 1: Binary Classification
Input
SQL-MapReduce Call
Output
Example 2: Multiple-Class Classification
Input
SQL-MapReduce Call
Output
Troubleshooting
Problem: Function runs slowly or runs out of memory.
Workarounds:
XGBoost_Predict
Usage
XGBoost_Predict Syntax
XGBoost_Predict Arguments
Input
Output
Examples
Example 1: Binary Classification
Input
SQL-MapReduce Call
Output
Example 2: Multiple-Class Classification
Input
SQL-MapReduce Call
Output
Troubleshooting
Problem: Function runs slowly or runs out of memory.
Workarounds:
Association Analysis
Basket_Generator
Background
Usage
Basket_Generator Syntax
Basket_Generator Arguments
Input
Output
Examples
Input
Example 1: Partition by tranid
SQL-MapReduce Call
Output
Example 2: Increase BasketSize
SQL-MapReduce Call
Output
CFilter
Background
Usage
CFilter Syntax
CFilter Arguments
Input
Output
Deleting Duplicate Output Table Rows
Examples
Input
Example 1: Collaborative Filtering by Product
SQL-MapReduce Call
Output
Example 2: Collaborative Filtering by Customer Segment
SQL-MapReduce Call
Output
FPGrowth
Background
Usage
FPGrowth Syntax
FPGrowth Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Recommender Functions
WSRecommender
Usage
WSRecommender Syntax
WSRecommender Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
KNNRecommenderTrain
Usage
KNNRecommenderTrain Syntax
KNNRecommenderTrain Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
KNNRecommenderPredict
Usage
KNNRecommenderPredict Syntax
KNNRecommenderPredict Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Graph Analysis
Overview of Graph Analysis Functions
AllPairsShortestPath
Usage
AllPairsShortestPath Syntax
AllPairsShortestPath Arguments
Input
Deleting Duplicate Edges Table Rows
Output
Examples
Input
Example 1: Unweighted, Unbounded Graph
SQL-MapReduce Call
Output
Example 2: Weighted, Unbounded Graph
SQL-MapReduce Call
Output
Example 3: Weighted, Bounded Graph with Sources
SQL-MapReduce Call
Output
Betweenness
Background
Usage
Betweenness Syntax
Betweenness Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Closeness
Background
Usage
Closeness Syntax
Closeness Arguments
Input
Output
Examples
Input
Example 1: Unweighted, Unbounded Graph
SQL-MapReduce Call
Output
Example 2: Weighted, Bounded Graph, MaxDistance=12
SQL-MapReduce Call
Output
Example 3: Weighted, Bounded Graph, MaxDistance=8
SQL-MapReduce Call
Output
EigenvectorCentrality
Centrality Formulas
Eigenvector Centrality
Katz Centrality
Bonacich Centrality
Eigenvector and Eigenvalue
Power Iteration
Centrality Calculation
Usage
EigenvectorCentrality Syntax
EigenvectorCentrality Arguments
Input
Output
Examples
Input
Example 1: Eigenvector Centrality (by Default)
SQL-MapReduce Call
Output
Example 2: Katz Centrality
SQL-MapReduce Call
Output
Example 3: Bonacich Centrality
SQL-MapReduce Call
Output
gTree
Usage
gTree Syntax
gTree Arguments
Input
Output
Examples
Input
Example 1: Show All Paths from Root Nodes
SQL-GR Call
Output
Example 2: Show Only Paths That Cycle or End at Leaves
SQL-GR Call
Output
LocalClusteringCoefficient
Background
Unweighted, Undirected Network (BUN)
Unweighted, Directed Network (BDN)
Weighted, Directed Network (WDN)
Weighted, Undirected Network (WUN)
Usage
LocalClusteringCoefficient Syntax
LocalClusteringCoefficient Arguments
Input
Output
Examples
Input
Example 1: WUN
SQL-MapReduce Call
Output
Example 2: WUN with DegreeRange 3 or Greater
SQL-MapReduce Call
Output
Example 3: WDN
SQL-MapReduce Call
Output
LoopyBeliefPropagation
Background
Usage
LoopyBeliefPropagation Syntax
LoopyBeliefPropagation Arguments
Input
Output
Examples
Example 1: Equally Weighted Symptoms/Edges
Input
SQL-MapReduce Call
Output
Example 2: Unequally Weighted Symptoms/Edges
Input
SQL-MapReduce Call
Output
Modularity
Background
Resolution
Usage
Modularity Syntax
Modularity Arguments
Input
Output
Examples
Input
Example 1: Unweighted Edges
SQL-MapReduce Call
Output
Example 2: Weighted Edges and Community Edge Table
SQL-MapReduce Call
Output
Tips
Troubleshooting
Problem: Function runs slowly for large graphs or terminates unsuccessfully.
Workarounds:
Problem: Function terminates with errors on vertices table or edges table.
Workarounds:
Problem: Function completes successfully but results are poor.
Workarounds:
nTree
Background
Equity Trading
Social Networking
Usage
nTree Syntax
nTree Arguments
Cycles in nTree
Very Deep Trees
Input
Output
Examples
Example 1: Find an Employeeās Reports
Input
SQL-MapReduce Call
Output
Example 2: Find an Employeeās Management Chain
Input
SQL-MapReduce Call
Output
Example 3: Show Reporting Structure by Department
Input
SQL-MapReduce Call
Output
PageRank
Usage
PageRank Syntax
PageRank Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
pSALSA
Background
SALSA
pSALSA
Usage
pSALSA Syntax
pSALSA Arguments
Input
Output
Examples
Example 1: User Similarity in a Social Network without Edge Weight
Input
SQL-MapReduce Call
Output
Example 2: User Similarity in a Social Network with Edge Weight
Input
SQL-MapReduce Call
Output
Example 3: User Similarity and Product Recommendation
Input
SQL-MapReduce Call
Output
Example 4: Using the Sources and Targets Tables as Inputs
Input
SQL-MapReduce Call
Output
RandomWalkSample
Background
Usage
RandomWalkSample Syntax
RandomWalkSample Arguments
Input
Output
Example
Input
SQL-GR Call
Output
Neural Networks
Introduction to Neural Networks
NeuralNet
Usage
NeuralNet Syntax
NeuralNet Arguments
Input
Output
Example
Input
Split Input into Training and Testing Data Sets
SQL-MapReduce Call
Output
NeuralNetPredict
Usage
NeuralNetPredict Syntax
NeuralNetPredict Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Calculating Prediction Accuracy
Data Transformation
Antiselect
Usage
Antiselect Syntax
Antiselect Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Apache_Log_Parser
Background
Apache Log Configuration
Apache Log Parser Item-Name Mapping
Usage
Apache_Log_Parser Syntax
Apache_Log_Parser Arguments
Input
Output
Examples
Input
Example 1: Default Extended/Combined Log Format
SQL-MapReduce Call
Output
Example 2: Common logformat
SQL-MapReduce Call
Output
Categorize
Usage
Categorize Syntax
Categorize Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
Fellegi-Sunter Functions
Background
FellegiSunterTrainer
Usage
FellegiSunterTrainer Syntax
FellegiSunterTrainer Arguments
Input
Output
Examples
Input
Example 1: Unsupervised Learning
SQL-MapReduce Call
Output
Example 2: Supervised Learning
SQL-MapReduce Call
Output
FellegiSunterPredict
Usage
FellegiSunterPredict Syntax
FellegiSunterPredict Arguments
Input
Output
Examples
Input
Example 1: Use Unsupervised Learning Model (fg_unsupervised_model)
SQL-MapReduce Call
Output
Example 2: Use supervised learning model (fg_supervised_model)
SQL-MapReduce Call
Output
Geometry Functions
GeometryLoader
Usage
GeometryLoader Syntax
GeometryLoader Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
PointInPolygon
Usage
PointInPolygon Syntax
Small Polygon Count and Large Point Count
Large Polygon Count and Small Point Count
Only to Determine Relations of Points and Polygons in Same Group
PointInPolygon Arguments
Input
Output
Examples
Example 1: With OutputAll ('true')
Input
SQL-MapReduce Call
Output
Example 2: With OutputAll ('false')
SQL-MapReduce Call
Output
Example 3: Passenger Coordinates as Separate Columns
Input
SQL-MapReduce Call
Output
GeometryOverlay
Usage
GeometryOverlay Syntax
UNION, INTERSECTION, DIFFERENCE and SYMDIFFERENCE
CONVEXHULL
BUFFER
GeometryOverlay Arguments
Input
Output
Examples
Input
Example 1: Intersection
SQL-MapReduce Call
Output
Example 2: Union
SQL-MapReduce Call
Output
Example 3: Buffer (Single Input)
SQL-MapReduce Call
Output
IdentityMatch
Background
Usage
IdentityMatch Syntax
When Reference Data Fits in Memory
When Reference Data Does Not Fit in Memory
IdentityMatch Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
IPGeo
Usage
IPGeo Syntax
IPGeo Arguments
Input
Output
Examples
Input
Example 1: Specify Location of IP Database
SQL-MapReduce Call
Example 2: IP Database Stored as Aster Database File
SQL-MapReduce Call
Example 3: Use Default Maxmind Geolite Database
SQL-MapReduce Call
Output
Extending IPGeo
JSONParser
Background
Usage
JSONParser Syntax
JSONParser Arguments
Input
Output
Examples
Example 1: With Nondefault Options
Input
SQL-MapReduce Call
Output
Example 2: With Default Argument Values
Input
SQL-MapReduce Call
Output
Example 3: Parsing with Ancestor (Search Path Argument Specified)
Input
SQL-MapReduce Call
Output
Example 4: Specifying ERROR_HANDLER When Calling JSONParser
Input
SQL-MapReduce Call
Output
Multi_Case
Usage
Multi_Case Syntax
Multi_Case Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
MurmurHash
Usage
MurmurHash Syntax
MurmurHash Arguments
Input
Output
Examples
Input
Example 1: 32-Bit Hash Value (by Default)
SQL-MapReduce Call
Output
Example 2: 64-Bit Value (Specified)
SQL-MapReduce Call
Output
OutlierFilter
Usage
OutlierFilter Syntax
OutlierFilter Arguments
Input
Output
Examples
Input
Example 1: Method ('percentile'), ReplacementValue ('null')
SQL-MapReduce Call
Output
Example 2: Method ('MAD-median'), ReplacementValue ('median')
SQL-MapReduce Call
Output
Pack
Usage
Pack Syntax
Pack Arguments
Input
Output
Examples
Input
Example 1: Default Options
SQL-MapReduce Call
Output
Example 2: Nondefault Options
SQL-MapReduce Call
Output
Pivot
Usage
Pivot Syntax
Pivot Arguments
Input
Output
Examples
Input
Example 1: Use Default Pivot Keys
SQL-MapReduce Call
Output
Example 2: Specify Pivot Keys
SQL-MapReduce Call
Output
Example 3: Specify Maximum Number of Rows in Any Partition
SQL-MapReduce Call
Output
PSTParserAFS
Usage
Verifying that AFS is Working
PSTParserAFS Syntax
PSTParserAFS Arguments
Input
Output
Alternative Way to Run PSTParserAFS
Examples
Example 1: Single PST File, Default Output Fields
Input
SQL-MapReduce Call
Output
Example 2: Single PST File, Specified Output Fields
Input
SQL-MapReduce Call
Output
Example 3: Directory of PST Files, Exclude Argument
Example 4: Path and Exclude Arguments with Regular Expressions
Example 5: Multiple PST Files, Specified Host and AFS Server Port Attributes
Example 6: Using table_from_afs
Scale Functions
Background
ScaleMap
Usage
ScaleMap Syntax
ScaleMap Arguments
Input
Invalid Input Data Handling
Output
Scale
Usage
Scale Syntax
Scale Arguments
Input
Output
Examples
Example 1: Scale with Method('midrange')
Input
SQL-MapReduce Call
Output
Example 2: Scale with Method('midrange') and Intercept(-min)
Input
SQL-MapReduce Call
Output
Example 3: Use Training Data to Scale Test Data
Input
Step 1: Create Statistics Table from Training Data
Step 2: Scale Test Data
Output
Example 4: Scale with Multiple Methods
Input
SQL-MapReduce Call
Output
Example 5: Using Scale Output in KMeans
Input
Step 1: Use Scale to Create Table of Scaled Data
Step 2: Input Scaled Data to KMeans
Output
ScalePrinter
Usage
ScalePrinter Syntax
Input
Output
Example
Input
SQL-MapReduce Call
Output
PartitionScale
Usage
PartitionScale Syntax
PartitionScale Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
StringSimilarity
Usage
StringSimilarity Syntax
StringSimilarity Arguments
Input
Output
Examples
Input
Example 1: Comparison of src_text1 with tar_text
SQL-MapReduce Call
Output
Example 2: Comparison of src_text2 with tar_text
SQL-MapReduce Call
Output
Unpack
Usage
Unpack Syntax
Unpack Arguments
Input
Output
Examples
Example 1: Delimiter Separates Virtual Columns
Input
SQL-MapReduce Call
Output
Example 2: No Delimiter Separates Virtual Columns
Input
SQL-MapReduce Call
Output
Unpivot
Usage
Unpivot Syntax
Unpivot Arguments
Input
Output
Examples
Input
Example 1: Specified Unpivot Columns, Default Optional Values
SQL-MapReduce Call
Output
Example 2: Specified Unpivot Columns, Specified Optional Values
SQL-MapReduce Call
Output
Example 3: Specified Unpivot Range, Default Optional Values
SQL-MapReduce Call
Output
URIPack
Usage
URIPack Syntax
URIPack Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
URIUnpack
Background
Usage
URIUnpack Syntax
URIUnpack Arguments
Input
Output
Example
Input
SQL-MapReduce Call
Output
XMLParser
Usage
XMLParser Syntax
XMLParser Arguments
Input
Output
Examples
Example 1: Specify Sibling and Sibling_Delimiter
Input
SQL-MapReduce Call
Output
Example 2: Specify Ancestor
Input
SQL-MapReduce Call
Output
Example 3: Use Regular Expressions in Nodes and Ancestor
Input
SQL-MapReduce Call
Output
Example 4: Handle Errors
Input
SQL-MapReduce Call
Output
Example 5: Show Grandparent, Parent, and Child Nodes
Input
SQL-MapReduce Call
Output
XMLRelation
Usage
XMLRelation Syntax
XMLRelation Arguments
Input
Output
Output ('fulldata')
Output ('parentchild')
Output ('fullpath')
Examples
Example 1: Output Three Different Output Table Schemas
Input
SQL-MapReduce Call 1
Output
SQL-MapReduce Call 2
Output
SQL-MapReduce Call 3
Output
Example 2: Output Attributes as Nodes
Input
SQL-MapReduce Call
Output
Example 3: Enable Error Handling
Input
SQL-MapReduce Call
Output
Aster Scoring SDK
Introduction to Aster Scoring SDK
AMLGenerator
Usage
AMLGenerator Syntax
AMLGenerator Arguments
Input
Output
Header
Request Columns
Request Parameters
Model Columns
Model Data
Example
Input
SQL-MapReduce Call
Output
Scorer
Functional Support
Scorer Input Formats
Data Types
Scorer Output Formats
Scoring API
Javadoc
Examples
Logging Support
Performance
Aster Scoring SDK Functions
Aster Scoring SDK CoxPredict
Model Format
Request Definition
Parameters
Aster Scoring SDK Extract Sentiment
Model Format
Request Definition
Parameters
Additional Notes
Aster Scoring SDK Generalized Linear Model
Model Format
Request Definition
Parameters
Aster Scoring SDK LDA Inference
Model Format
Request Definition
Parameters
Aster Scoring SDK NaĆÆve Bayes
Model Format
Request Definition
Parameters
Aster Scoring SDK NaĆÆve Bayes Text Classifier
Model Format
Request Definition
Parameters
Aster Scoring SDK Random Forest
Model Format
Request Definition
Parameters
Aster Scoring SDK Single Decision Tree
Model Format
Request Definition
Parameters
Aster Scoring SDK SparseSVM
Model Format
Request Definition
Parameters
Aster Scoring SDK Text Parser
Model Format
Request Definition
Parameters
Additional Notes
Aster Scoring SDK Text Tagging
Model Format
Request Definition
Parameters
Additional Notes
Aster Scoring SDK Text Tokenizer
Model Format
Request Definition
Parameters
Additional Notes
Aster Scoring SDK TF_IDF
Model Format
Request Definition
Parameters
FAQ
How is Aster Scoring SDK different from functions in the Aster Analytics suite?
Does Aster Scoring SDK include a real-time streaming engine or a listening framework?
Does Aster Scoring SDK Need Aster Database and Aster Analytics Suite?
Can Aster Scoring SDK be invoked in a cloud environment such as Amazon Web Services (AWS)?
Is Aster Scoring SDK thread-safe? Can it be deployed in a multithreaded parallel system?
What is the recommended way to incorporate Aster Scoring SDK in a multithreaded system?
Does Aster Scoring SDK work on Predictive Model Markup Language (PMML) based models?
How fast is the response time of Aster Scoring SDK?
Visualization Functions
Visualization Functions
Aster Database System Utility Functions
Aster Database System Utility Functions
List of Functions and Their Syntax
Organization of List of Functions
Time Series, Path, and Attribution Analysis
Arima Syntax
ArimaPredictor Syntax
Attribution Syntax (Multiple Inputs)
Attribution Syntax (Single Input)
Burst Syntax
CCM Syntax
CCMPrepare Syntax
ChangePointDetection Syntax
DTW Syntax
DWT Syntax
DWT2D Syntax
FFT Syntax
FrequentPaths Syntax
IDWT Syntax
IDWT2D Syntax
IFFT Syntax
Interpolator Syntax
Path_Analyzer Syntax
Path_Generator Syntax
Path_Start Syntax
Path_Summarizer Syntax
RtChangePointDetection Syntax
SAX2 Syntax (Multiple Inputs)
SAX2 Syntax (Single Input)
SeriesSplitter Syntax
Sessionize Syntax
SupervisedShapeletClassifier Syntax
SupervisedShapeletTrainer Syntax
TimeSeriesOrders Syntax
UnsupervisedShapelet Syntax
VARMAX Syntax
Pattern Matching with TeradataĀ Aster nPath
nPath Syntax
Statistical Analysis
AddOnePlayer Syntax
Approximate Distinct Count Syntax
Approximate Percentile Syntax
CMAVG Syntax
ConfusionMatrix Syntax
Correlation Syntax
CoxPH Syntax
CoxPredict Syntax
CoxSurvFit Syntax
CrossValidation Syntax
Distribution Matching
Hypothesis-Test Mode Syntax (Continuous Distributions)
Option 1: For Multiple-Node Data Sets
Option 2: For Single-Node Data Sets
Hypothesis-Test Mode Syntax (Discrete Distributions)
Option 1: For Multiple-Node Data Sets
Option 2: For Single-Node Data Sets and Any CvM Test
Best-Match Mode Syntax (DOUBLE PRECISION Input)
Best-Match Mode Syntax (INTEGER Input)
EMAVG Syntax
FMeasure Syntax
GenerateCombination Syntax
GLM Syntax
GLMPredict Syntax
GLM2 Syntax
GLM2Predict Syntax
Histogram (Hist) Syntax
HMMDecoder Syntax
HMMEvaluator Syntax
HMMSupervisedLearner Syntax
HMMUnsupervisedLearner Syntax
KNN Syntax
LARS Syntax
LARSPredict Syntax
Linear Regression Syntax
LinRegPredict Syntax
LRTEST Syntax
Percentile Syntax
Principal Component Analysis (PCA) Syntax
PCAPlot Syntax
RandomSample Syntax
ROC Syntax
Sample Syntax
Unconditional Sampling, Single Sample Rate
Unconditional Sampling, Approximate Sample Size
Conditional Simple Sampling, Single Sample Rate
Conditional Sampling, Variable Sample Rates
Conditional Sampling, Approximate Sample Size
Conditional Sampling, Variable Approximate Sample Sizes
SMAVG Syntax
SortCombination Syntax
Support Vector Machines
DenseSVMModelPrinter Syntax
DenseSVMPredictor Syntax
DenseSVMTrainer Syntax
SparseSVMPredictor Syntax
SparseSVMTrainer Syntax
SVMModelPrinter Syntax
VectorDistance Syntax
VWAP Syntax
WMAVG Syntax
Text Analysis
Evaluate Named Entity Finder Syntax
EvaluateSentimentExtractor Syntax
ExtractSentiment Syntax
FindNamedEntity Syntax
LDAInference Syntax
LDATopicPrinter Syntax
LDATrainer Syntax
Levenshtein Distance (LDist) Syntax
NaiveBayesTextClassifierPredict Syntax
NaiveBayesTextClassifierTrainer Syntax
NER Syntax
NEREvaluator Syntax
NERTrainer Syntax
nGram Syntax
POSTagger Syntax
Sentenizer Syntax
TextChunker Syntax
TextClassifier Syntax
TextClassifierEvaluator Syntax
TextClassifierTrainer Syntax
TextMorph Syntax
Text_Parser Syntax
TextTagging Syntax
TextTokenizer Syntax
TF_IDF Syntax
TrainNamedEntityFinder Syntax
TrainSentimentExtractor Syntax
Cluster Analysis
Canopy Syntax
GMMFit Syntax
GMMPredict Syntax
GMMProfile Syntax
KMeans Syntax
KMeansPlot Syntax
KModes Syntax
KModesPredict Syntax
Minhash Syntax
Naive Bayes
Naive Bayes Syntax
NaiveBayesPredict Syntax
Ensemble Methods
AdaBoost_Drive Syntax
AdaBoost_Predict Syntax
Forest_Analyze Syntax
Forest_Drive Syntax
Forest_Predict Syntax
Single_Tree_Drive Syntax
Single_Tree_Predict Syntax
XGBoost_Drive Syntax
XGBoost_Predict Syntax
Association Analysis
Basket_Generator Syntax
CFilter Syntax
FPGrowth Syntax
KNNRecommenderPredict Syntax
KNNRecommenderTrain Syntax
WSRecommender Syntax
Graph Analysis
AllPairsShortestPath Syntax
Betweenness Syntax
Closeness Syntax
EigenvectorCentrality Syntax
gTree Syntax
LocalClusteringCoefficient Syntax
LoopyBeliefPropagation Syntax
Modularity Syntax
nTree Syntax
PageRank Syntax
pSALSA Syntax
RandomWalkSample Syntax
Neural Networks
NeuralNet Syntax
NeuralNetPredict Syntax
Data Transformation
Antiselect Syntax
Apache_Log_Parser Syntax
Categorize Syntax
FellegiSunterPredict Syntax
FellegiSunterTrainer Syntax
GeometryLoader Syntax
GeometryOverlay Syntax
UNION, INTERSECTION, DIFFERENCE and SYMDIFFERENCE
CONVEXHULL
BUFFER
IdentityMatch Syntax
When Reference Data Fits in Memory
When Reference Data Does Not Fit in Memory
IPGeo Syntax
JSONParser Syntax
Multi_Case Syntax
MurmurHash Syntax
OutlierFilter Syntax
Pack Syntax
PartitionScale Syntax
Pivot Syntax
PointInPolygon Syntax
Small Polygon Count and Large Point Count
Large Polygon Count and Small Point Count
Only to Determine Relations of Points and Polygons in Same Group
PSTParserAFS Syntax
Scale Syntax
ScaleMap Syntax
ScalePrinter Syntax
StringSimilarity Syntax
Unpack Syntax
Unpivot Syntax
URIPack Syntax
URIUnpack Syntax
XMLParser Syntax
XMLRelation Syntax
Aster Scoring SDK
AMLGenerator Syntax
Scorer
Visualization Functions
InputTable
Specifies the table containing the input data to be trained.
OutputTable
Specifies the table to which to output the trained network weight data.
WeightTable
[Optional] Specifies the table that lists the starting values for the neural network weights. Default behavior: The function assigns the initial weights for the neural network randomly.
InputColumns
Specifies the name of the columns of the InputTable that contains the numerical predictor variables (x1, x2, x3, and so on).
ResponseColumns
Specifies the names of the input table columns of that contain the numerical dependent variables (y1, y2, y3, and so on).
GroupByColumns
[Optional] Specifies the weight table columns in which to output different neural networks for different groups.
HiddenLayers
[Optional] Specifies the number of hidden neurons in each layer, from left to right. The hidden_layers must be a nonnegative INTEGER. Default: 1 layer, 1 neuron. For example, HiddenLayers('5','5') produces a 3-layer network with 5 neurons in each hidden layer, while HiddenLayers('3') produces the network shown in Introduction to Neural Networks .
Threshold
[Optional] Specifies the threshold for the partial derivatives of the error function as stopping criteria. The threshold must be a DOUBLE value. Default: 0.01.
MaxIterNum
[Optional] Specifies the maximum number of iterations for the training of the neural network. The max_iterations must be an INTEGER value. Default: 1.
LearningRate
[Optional] Specifies the learning rate used by traditional backpropagation. Default: 0.001.
ActivationFunction
[Optional] Specifies the name of the differentiable function that the function applies to the result of the cross-product of the neurons and the weights.:
'logistic' : logistic (Default )
'tanh' : hyperbolic tangent
ErrorFunction
[Optional] Specifies the name of the differentiable function with which the function calculates the error:
'sse' : sum of squared errors (Default )
'ce' : cross-entropy
Algorithms
[Optional] Specifies the algorithm type that the function uses to calculate the neural network, 'backprop'.
LinearOutput
[Optional] Specifies whether to apply the ActivationFunction to the output neurons. Default: 'true'.
OverwriteOutput
[Optional] Specifies whether to overwrite the output table. Default: 'false'.
Seed
[Optional] Specifies the seed with which to initialize the model, an INTEGER. Given the same seed, cluster configuration, and input table, the function generates the same model. Default behavior: The function initializes the model randomly.